File size: 10,183 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Stable Diffusion XL text-to-image fine-tuning

The `train_text_to_image_sdxl.py` script shows how to fine-tune Stable Diffusion XL (SDXL) on your own dataset.

🚨 This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparamters to get the best result on your dataset. 🚨

## Running locally with PyTorch

### Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

**Important**

To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:

```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```

Then cd in the `examples/text_to_image` folder and run
```bash
pip install -r requirements_sdxl.txt
```

And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

```bash
accelerate config
```

Or for a default accelerate configuration without answering questions about your environment

```bash
accelerate config default
```

Or if your environment doesn't support an interactive shell (e.g., a notebook)

```python
from accelerate.utils import write_basic_config
write_basic_config()
```

When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.

### Training

```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
export DATASET_NAME="lambdalabs/pokemon-blip-captions"

accelerate launch train_text_to_image_sdxl.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --pretrained_vae_model_name_or_path=$VAE_NAME \
  --dataset_name=$DATASET_NAME \
  --enable_xformers_memory_efficient_attention \
  --resolution=512 --center_crop --random_flip \
  --proportion_empty_prompts=0.2 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 --gradient_checkpointing \
  --max_train_steps=10000 \
  --use_8bit_adam \
  --learning_rate=1e-06 --lr_scheduler="constant" --lr_warmup_steps=0 \
  --mixed_precision="fp16" \
  --report_to="wandb" \
  --validation_prompt="a cute Sundar Pichai creature" --validation_epochs 5 \
  --checkpointing_steps=5000 \
  --output_dir="sdxl-pokemon-model" \
  --push_to_hub
```

**Notes**:

*  The `train_text_to_image_sdxl.py` script pre-computes text embeddings and the VAE encodings and keeps them in memory. While for smaller datasets like [`lambdalabs/pokemon-blip-captions`](https://hf.co/datasets/lambdalabs/pokemon-blip-captions), it might not be a problem, it can definitely lead to memory problems when the script is used on a larger dataset. For those purposes, you would want to serialize these pre-computed representations to disk separately and load them during the fine-tuning process. Refer to [this PR](https://github.com/huggingface/diffusers/pull/4505) for a more in-depth discussion.
* The training script is compute-intensive and may not run on a consumer GPU like Tesla T4.
* The training command shown above performs intermediate quality validation in between the training epochs and logs the results to Weights and Biases. `--report_to`, `--validation_prompt`, and `--validation_epochs` are the relevant CLI arguments here.
* SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).

### Inference

```python
from diffusers import DiffusionPipeline
import torch

model_path = "you-model-id-goes-here" # <-- change this
pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe.to("cuda")

prompt = "A pokemon with green eyes and red legs."
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
image.save("pokemon.png")
```

### Inference in Pytorch XLA
```python
from diffusers import DiffusionPipeline
import torch
import torch_xla.core.xla_model as xm

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(model_id)

device = xm.xla_device()
pipe.to(device)

prompt = "A pokemon with green eyes and red legs."
start = time()
image = pipe(prompt, num_inference_steps=inference_steps).images[0]
print(f'Compilation time is {time()-start} sec')
image.save("pokemon.png")

start = time()
image = pipe(prompt, num_inference_steps=inference_steps).images[0]
print(f'Inference time is {time()-start} sec after compilation')
```

Note: There is a warmup step in PyTorch XLA. This takes longer because of
compilation and optimization. To see the real benefits of Pytorch XLA and
speedup, we need to call the pipe again on the input with the same length
as the original prompt to reuse the optimized graph and get the performance
boost.

## LoRA training example for Stable Diffusion XL (SDXL)

Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*.

In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages:

- Previous pretrained weights are kept frozen so that model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114).
- Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable.
- LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter.

[cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository.

With LoRA, it's possible to fine-tune Stable Diffusion on a custom image-caption pair dataset
on consumer GPUs like Tesla T4, Tesla V100.

### Training

First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables and, optionally, the `VAE_NAME` variable. Here, we will use [Stable Diffusion XL 1.0-base](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and the [Pokemons dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions).

**___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [Weights and Biases](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training to automatically log images.___**

```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
```

For this example we want to directly store the trained LoRA embeddings on the Hub, so
we need to be logged in and add the `--push_to_hub` flag.

```bash
huggingface-cli login
```

Now we can start training!

```bash
accelerate launch train_text_to_image_lora_sdxl.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --pretrained_vae_model_name_or_path=$VAE_NAME \
  --dataset_name=$DATASET_NAME --caption_column="text" \
  --resolution=1024 --random_flip \
  --train_batch_size=1 \
  --num_train_epochs=2 --checkpointing_steps=500 \
  --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \
  --mixed_precision="fp16" \
  --seed=42 \
  --output_dir="sd-pokemon-model-lora-sdxl" \
  --validation_prompt="cute dragon creature" --report_to="wandb" \
  --push_to_hub
```

The above command will also run inference as fine-tuning progresses and log the results to Weights and Biases.

**Notes**:

* SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).

### Finetuning the text encoder and UNet

The script also allows you to finetune the `text_encoder` along with the `unet`.

🚨 Training the text encoder requires additional memory.

Pass the `--train_text_encoder` argument to the training script to enable finetuning the `text_encoder` and `unet`:

```bash
accelerate launch train_text_to_image_lora_sdxl.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --dataset_name=$DATASET_NAME --caption_column="text" \
  --resolution=1024 --random_flip \
  --train_batch_size=1 \
  --num_train_epochs=2 --checkpointing_steps=500 \
  --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \
  --seed=42 \
  --output_dir="sd-pokemon-model-lora-sdxl-txt" \
  --train_text_encoder \
  --validation_prompt="cute dragon creature" --report_to="wandb" \
  --push_to_hub
```

### Inference

Once you have trained a model using above command, the inference can be done simply using the `DiffusionPipeline` after loading the trained LoRA weights.  You
need to pass the `output_dir` for loading the LoRA weights which, in this case, is `sd-pokemon-model-lora-sdxl`.

```python
from diffusers import DiffusionPipeline
import torch

model_path = "takuoko/sd-pokemon-model-lora-sdxl"
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipe.to("cuda")
pipe.load_lora_weights(model_path)

prompt = "A pokemon with green eyes and red legs."
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
image.save("pokemon.png")
```