File size: 9,386 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import torch.nn.functional as F


def pairLoss(fea1, fea2, mask):
    # fea1_size (bs, max_len, dim)
    # fea2_size (bs, max_len, dim)
    # mask_size (bs, max_len)
    # '-Inf' for padded item, '0' for others

    fea1 = F.normalize(fea1, p=2, dim=-1)
    fea2 = F.normalize(fea2, p=2, dim=-1)
    fea_sim = (fea1 * fea2).sum(dim=-1)  # (bs, max_len)
    fea_sim = torch.masked_select(fea_sim, mask == 0)
    loss = 1.0 - torch.mean(fea_sim)
    return loss


def SimpTripLoss(fea1, fea2):
    # img fea1_size (bs, max_len1, dim)  mask1_size (bs, max_len1)
    # text fea2_size (bs, max_len2, dim)  mask2_size (bs, max_len2)
    # '-Inf' for padded item, '0' for others
    # fea1 = fea1.mean(dim=1)  #(bs, dim)
    # mask2 = torch.where(mask2==0, torch.tensor([1.0],device=mask2.device), torch.tensor([0.0],device=mask2.device))
    # fea2 = (fea2 * mask2.unsqueeze(-1)).sum(dim=1) / mask2.sum(dim=1).unsqueeze(-1) #(bs, dim)

    fea1 = F.normalize(fea1, p=2, dim=-1)
    fea2 = F.normalize(fea2, p=2, dim=-1)

    # match fea1 to fea2
    sim_pos1 = (fea1 * fea2).sum(dim=1)  # (bs)
    # (bs, 1, dim)  (1, bs, dim)
    sim_neg1_all = (fea1.unsqueeze(1) * fea2.unsqueeze(0)).sum(dim=-1)  # (bs,bs)
    unmask = torch.eye(sim_pos1.size(0), dtype=torch.float32, device=sim_pos1.device)
    unmask = torch.where(unmask == 1, torch.tensor([float('-Inf')], device=unmask.device), unmask)

    sim_neg1, _ = torch.max(sim_neg1_all + unmask, 1)
    loss1 = -sim_pos1 + sim_neg1 + 0.2
    loss1 = torch.maximum(loss1, torch.zeros_like(loss1)).mean()

    # match fea2 to fea1
    sim_pos2 = (fea2 * fea1).sum(
        dim=1)  # (bs)    sim_neg2_all = (fea2.unsqueeze(1) * fea1.unsqueeze(0)).sum(dim=-1)  #(bs,bs)
    sim_neg2_all = (fea2.unsqueeze(1) * fea1.unsqueeze(0)).sum(dim=-1)  # (bs,bs)

    sim_neg2, _ = torch.max(sim_neg2_all + unmask, 1)
    loss2 = -sim_pos2 + sim_neg2 + 0.2
    loss2 = torch.maximum(loss2, torch.zeros_like(loss2)).mean()

    loss = loss1 + loss2
    return loss


def NCELoss(fea1, fea2):
    # img fea1_size (bs, max_len1, dim)  mask1_size (bs, max_len1)
    # text fea2_size (bs, max_len2, dim)  mask2_size (bs, max_len2)
    # '-Inf' for padded item, '0' for others
    # fea1 = fea1.mean(dim=1)  #(bs, dim)
    # mask2 = torch.where(mask2==0, torch.tensor([1.0],device=mask2.device), torch.tensor([0.0],device=mask2.device))
    # fea2 = (fea2 * mask2.unsqueeze(-1)).sum(dim=1) / mask2.sum(dim=1).unsqueeze(-1) #(bs, dim)

    fea1 = F.normalize(fea1, p=2, dim=-1)
    fea2 = F.normalize(fea2, p=2, dim=-1)

    # match fea1 to fea2
    sim_pos1 = (fea1 * fea2).sum(dim=1).unsqueeze(-1)  # (bs,1)
    BS = sim_pos1.size(0)
    # (bs, 1, dim)  (1, bs, dim)
    sim_neg1_all = (fea1.unsqueeze(1) * fea2.unsqueeze(0)).sum(dim=-1)  # (bs,bs)
    unmask = torch.eye(sim_pos1.size(0), dtype=torch.float32, device=sim_pos1.device)
    sim_neg1_all = torch.masked_select(sim_neg1_all, unmask == 0).view(BS, BS - 1)  # (bs, bs-1)
    sim1_pos_neg = torch.cat((sim_pos1, sim_neg1_all), dim=1) / 0.07  # (bs, bs)
    loss1 = -F.log_softmax(sim1_pos_neg, dim=1)[:, 0].mean()

    # match fea2 to fea1
    sim_pos2 = (fea2 * fea1).sum(dim=1).unsqueeze(-1)  # (bs,1)
    sim_neg2_all = (fea2.unsqueeze(1) * fea1.unsqueeze(0)).sum(dim=-1)  # (bs,bs)
    sim_neg2_all = torch.masked_select(sim_neg2_all, unmask == 0).view(BS, BS - 1)  # (bs, bs-1)
    sim2_pos_neg = torch.cat((sim_pos2, sim_neg2_all), dim=1) / 0.07  # (bs, bs)
    loss2 = -F.log_softmax(sim2_pos_neg, dim=1)[:, 0].mean()

    loss = (loss1 + loss2) / 2.0
    return loss


def AlignTripLoss(fea1, fea2, mask1, mask2):
    # fea1_size (bs, max_len1, dim)  mask1_size (bs, max_len1)
    # fea2_size (bs, max_len2, dim)  mask2_size (bs, max_len2)
    # '-Inf' for padded item, '0' for others
    fea1 = F.normalize(fea1, p=2, dim=-1)
    fea2 = F.normalize(fea2, p=2, dim=-1)

    # match fea1 to fea2
    sim_pos1 = cal_sim(fea1, fea2, mask1, mask2)  # (bs)
    # (bs, 1, max_len1, dim)  (1, bs, max_len2, dim)
    sim_neg1_all = cal_sim_all(fea1.unsqueeze(1), fea2.unsqueeze(0), mask1, mask2)  # (bs,bs)
    unmask = torch.eye(sim_pos1.size(0), dtype=torch.float32, device=sim_pos1.device)
    unmask = torch.where(unmask == 1, torch.tensor([float('-Inf')], device=unmask.device), unmask)

    sim_neg1, _ = torch.max(sim_neg1_all + unmask, 1)
    loss1 = -sim_pos1 + sim_neg1 + 0.2
    loss1 = torch.maximum(loss1, torch.zeros_like(loss1)).mean()

    # match fea2 to fea1
    sim_pos2 = cal_sim(fea2, fea1, mask2, mask1)  # (bs)
    # (bs, 1, max_len1, dim)  (1, bs, max_len2, dim)
    sim_neg2_all = cal_sim_all(fea2.unsqueeze(1), fea1.unsqueeze(0), mask2, mask1)  # (bs,bs)
    sim_neg2, _ = torch.max(sim_neg2_all + unmask, 1)
    loss2 = -sim_pos2 + sim_neg2 + 0.2
    loss2 = torch.maximum(loss2, torch.zeros_like(loss2)).mean()

    loss = loss1 + loss2

    return loss


def cal_sim_all(fea1, fea2, mask1, mask2):
    # fea1_size (bs, 1, max_len1, dim)  mask1_size (bs, max_len1)
    # fea2_size (1, bs, max_len2, dim)  mask2_size (bs, max_len2)
    # '-Inf' for padded item, '0' for others
    max_len1 = fea1.size(2)
    max_len2 = fea2.size(2)
    bs = fea1.size(0)
    fea1_tmp = fea1.unsqueeze(3)  # (bs, 1, max_len1, 1, dim)
    fea2_tmp = fea2.unsqueeze(2)  # (1, bs, 1, max_len2, dim)
    fea_sim = (fea1_tmp * fea2_tmp).sum(dim=-1)  # (bs, bs, max_len1, max_len2)

    fea_sim = fea_sim + mask2.unsqueeze(dim=1)  # (bs, bs, max_len1, max_len2)
    idxs = torch.argmax(fea_sim, dim=-1).view(-1).unsqueeze(-1)  # (bs*bs*max_len1, 1)
    fea_sim = fea_sim.view(-1, max_len2)  # (bs*bs*max_len1, max_len2)
    select_sim = torch.gather(fea_sim, 1, idxs).view(bs, bs, max_len1)  # (bs, bs, max_len1)
    mask1_mult = torch.where(mask1 == 0, torch.tensor([1.0], device=mask1.device),
                             torch.tensor([0.0], device=mask1.device)).unsqueeze(1)  # (bs, 1, max_len1)
    select_sim = (select_sim * mask1_mult).sum(dim=-1) / mask1_mult.sum(dim=-1)  # (bs, bs)

    return select_sim


def cal_sim(fea1, fea2, mask1, mask2):
    # fea1_size (bs, max_len1, dim)  mask1_size (bs, max_len1)
    # fea2_size (bs, max_len2, dim)  mask2_size (bs, max_len2)
    # '-Inf' for padded item, '0' for others
    max_len1 = fea1.size(1)
    max_len2 = fea2.size(1)
    fea1_tmp = fea1.unsqueeze(2)  # (bs, max_len1, 1, dim)
    fea2_tmp = fea2.unsqueeze(1)  # (bs, 1, max_len2, dim)
    fea_sim = (fea1_tmp * fea2_tmp).sum(dim=-1)  # (bs, max_len1, max_len2)

    fea_sim = fea_sim + mask2.unsqueeze(dim=1)  # (bs, max_len1, max_len2)
    idxs = torch.argmax(fea_sim, dim=-1).view(-1).unsqueeze(-1)  # (bs*max_len1, 1)
    fea_sim = fea_sim.view(-1, max_len2)  # (bs*max_len1, max_len2)
    select_sim = torch.gather(fea_sim, 1, idxs).view(-1, max_len1)  # (bs, max_len1)
    mask1_mult = torch.where(mask1 == 0, 1, 0)
    select_sim = (select_sim * mask1_mult).sum(dim=-1) / mask1_mult.sum(dim=-1)  # (bs)

    return select_sim


def alignmentLoss(fea1, fea2, mask1, mask2):
    # fea1_size (bs, max_len1, dim)  mask1_size (bs, max_len1)
    # fea2_size (bs, max_len2, dim)  mask2_size (bs, max_len2)
    # '-Inf' for padded item, '0' for others

    fea1 = F.normalize(fea1, p=2, dim=-1)
    fea2 = F.normalize(fea2, p=2, dim=-1)
    loss1 = alignSingleLoss(fea1, fea2, mask1, mask2)
    loss2 = alignSingleLoss(fea2, fea1, mask2, mask1)
    loss = (loss1 + loss2) / 2.0
    return loss


def attAlignmentLoss(fea1, fea2, mask1, mask2, attFc):
    # fea1_size (bs, max_len1, dim)  mask1_size (bs, max_len1)
    # fea2_size (bs, max_len2, dim)  mask2_size (bs, max_len2)
    # '-Inf' for padded item, '0' for others

    fea1 = F.normalize(fea1, p=2, dim=-1)
    fea2 = F.normalize(fea2, p=2, dim=-1)
    fea1_tmp = fea1.unsqueeze(2)  # (bs, max_len1, 1, dim)
    fea2_tmp = fea2.unsqueeze(1)  # (bs, 1, max_len2, dim)
    fea_sim = fea1_tmp * fea2_tmp
    att_sim = attFc(fea_sim).squeeze(-1)  # (bs, max_len1, max_len2)
    fea_sim = fea_sim.sum(dim=-1)  # (bs, max_len1, max_len2)
    fea_sim = fea_sim * att_sim  # (bs, max_len1, max_len2)

    ###Simple as max_len1=49 
    loss = torch.masked_select(fea_sim, (mask2 == 0).unsqueeze(1))
    loss = 1.0 - loss.mean()

    return loss


def alignSingleLoss(fea1, fea2, mask1, mask2):
    # fea1_size (bs, max_len1, dim)  mask1_size (bs, max_len1)
    # fea2_size (bs, max_len2, dim)  mask2_size (bs, max_len2)
    # '-Inf' for padded item, '0' for others

    fea1_tmp = fea1.unsqueeze(2)  # (bs, max_len1, 1, dim)
    fea2_tmp = fea2.unsqueeze(1)  # (bs, 1, max_len2, dim)
    fea_sim = (fea1_tmp * fea2_tmp).sum(dim=-1)  # (bs, max_len1, max_len2)
    fea_sim = fea_sim + mask2.unsqueeze(dim=1)  # (bs, max_len1, max_len2)
    idxs = torch.argmax(fea_sim, dim=-1).view(-1).unsqueeze(-1)  # (bs*max_len1, 1)
    fea_sim = fea_sim.view(-1, fea_sim.size(-1))  # (bs*max_len1, max_len2)

    select_sim = torch.gather(fea_sim, 1, idxs).view(-1)  # (bs*max_len1)
    select_sim = torch.masked_select(select_sim, (mask1 == 0).view(-1))
    loss = 1.0 - torch.mean(select_sim)
    return loss


def getLanMask(seq_lens, max_len):
    # seq_lens (bs)
    mask = torch.ones((seq_lens.size(0), max_len))  # (bs, max_len)
    idxs = torch.arange(max_len).unsqueeze(dim=0)  # (1, max_len)
    seq_lens = seq_lens.unsqueeze(-1)  # (bs, 1)
    mask = torch.where(idxs < seq_lens, mask, torch.Tensor([0.0]))
    return mask