File size: 8,874 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# limit the number of cpus used by high performance libraries
import os
from typing import Dict

os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
import argparse
import os
from pathlib import Path
import json
import traceback

import numpy as np
import torch


FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # yolov5 deepsort root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative


def detect(tracker, device, source_path, video_map, opt):
    (
        out,
        show_vid,
        save_vid,
        save_txt,
        imgsz,
        evaluate,
        half,
        project,
        exist_ok,
        update,
        save_crop,
    ) = (
        opt.output,
        opt.show_vid,
        opt.save_vid,
        opt.save_txt,
        opt.imgsz,
        opt.evaluate,
        opt.half,
        opt.project,
        opt.exist_ok,
        opt.update,
        opt.save_crop,
    )
    from yolov5.utils.general import xyxy2xywh
    from yolov5.utils.torch_utils import select_device
    # Initialize
    device = select_device(device)
    half &= device.type != "cpu"  # half precision only supported on CUDA
    # initialize deepsort

    try:
        transition_data = video_map["clips"]
    except:
        print("no transition_data")
        transition_data = None
    try:
        c_box = video_map["content_box"]
    except:
        print("no content_box")
        c_box = None

    video_detect = json.load(open(source_path, encoding="UTF-8"))
    face_detections = video_detect["face_detections"]

    slice_id = 0
    for detects in face_detections:
        frame_idx = detects["frame_idx"]

        while (
            transition_data
            and (slice_id < len(transition_data))
            and (frame_idx >= transition_data[slice_id]["frame_end"])
        ):
            # print(frame_idx, transition_data[slice_id]['frame_end'])
            tracker.tracker.tracks = []
            slice_id += 1

        pred = detects["faces"]
        if pred is not None and len(pred):
            # Rescale boxes from img_size to im0 size
            det = []
            confs = []
            clss = []
            features = []
            for p in pred:
                det.append(p["bbox"])
                confs.append(float(p["det_score"]))
                features.append(p["embedding"])
                clss.append(0)
            det = np.array(det)
            confs = np.array(confs)
            clss = np.array(clss)
            features = torch.Tensor(features)

            xywhs = xyxy2xywh(det)

            # pass detections to deepsort
            if c_box:
                im0 = np.zeros((c_box[3] - c_box[1], c_box[2] - c_box[0]))
            else:
                im0 = np.zeros((video_map["height"], video_map["width"]))
            outputs = tracker.update(
                xywhs, confs, clss, im0, use_yolo_preds=True, features=features
            )

            assert len(pred) == len(outputs)
            for j, output in enumerate(outputs):
                bboxes = output[0:4]
                id = output[4]

                min_box_distance = np.inf
                match_p = None
                for p in pred:
                    if "trackid" not in p:
                        c_box_distance = abs(
                            bboxes - np.array(p["bbox"], dtype=np.int)
                        ).sum()
                        if c_box_distance < 10 and c_box_distance < min_box_distance:
                            match_p = p
                            min_box_distance = c_box_distance
                if match_p:
                    match_p["trackid"] = str(id)
                else:
                    print("not match: ", frame_idx, bboxes)
                    for p in pred:
                        print(p["bbox"])

        else:
            tracker.increment_ages()
        return video_map


class FaceTrackerByYolo5DeepSort(object):
    def __init__(
        self,
        config_file,
        device,
        deep_sort_model="osnet_ibn_x1_0_MSMT17",
        half: bool=False,
        
    ) -> None:
        from deep_sort.utils.parser import get_config
        from deep_sort.deep_sort import DeepSort
        cfg = get_config()
        cfg.merge_from_file(config_file)
        # Create as tracker
        self.tracker = DeepSort(
            deep_sort_model,
            device,
            max_dist=cfg.DEEPSORT.MAX_DIST,
            max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
            max_age=cfg.DEEPSORT.MAX_AGE,
            n_init=cfg.DEEPSORT.N_INIT,
            nn_budget=cfg.DEEPSORT.NN_BUDGET,
        )

    def __call__(self, args, video_path, video_map, **kwds) -> Dict:
        """_summary_

        Args:
            args (_type_): _description_
            video_path (_type_): _description_
            save_path (_type_): _description_
            map_path (_type_): _description_
            kwds:
                # parser.add_argument('--yolo_model', nargs='+', type=str, default='yolov5m.pt', help='model.pt path(s)')
                parser.add_argument('--deep_sort_model', type=str, default='osnet_ibn_x1_0_MSMT17')
                # parser.add_argument('--source', type=str, default='0', help='source')  # file/folder, 0 for webcam
                    '--output', type=str, default='inference/output', help='output folder'
                )  # output folder
                    '--imgsz',
                    '--img',
                    '--img-size',
                    nargs='+',
                    type=int,
                    default=[640],
                    help='inference size h,w',)
                    '--conf-thres', type=float, default=0.5, help='object confidence threshold')
                    '--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
                    '--fourcc',type=str,default='mp4v',
                    help='output video codec (verify ffmpeg support)',)
                    '--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
                    '--show-vid', action='store_true', help='display tracking video results')
                    '--save-vid', action='store_true', help='save video tracking results')
                    '--save-txt', action='store_true', help='save MOT compliant results to *.txt')
                # class 0 is person, 1 is bycicle, 2 is car... 79 is oven
                    '--classes',
                    nargs='+',
                    type=int,
                    help='filter by class: --class 0, or --class 16 17',
                )
                    '--agnostic-nms', action='store_true', help='class-agnostic NMS'
                )
                parser.add_argument('--augment', action='store_true', help='augmented inference')
                parser.add_argument('--update', action='store_true', help='update all models')
                parser.add_argument('--evaluate', action='store_true', help='augmented inference')
                parser.add_argument(
                    "--config_deepsort", type=str, default="deep_sort/configs/deep_sort.yaml"
                )
                    "--half", action="store_true", help="use FP16 half-precision inference"
                )
                parser.add_argument('--visualize', action='store_true', help='visualize features')
                    '--max-det', type=int, default=1000, help='maximum detection per image'
                )
                    '--save-crop', action='store_true', help='save cropped prediction boxes'
                )
                    '--dnn', action='store_true', help='use OpenCV DNN for ONNX inference'
                )
                    '--project', default=ROOT / 'runs/track', help='save results to project/name'
                )
                parser.add_argument('--name', default='exp', help='save results to project/name')
                    '--exist-ok', action='store_true',
                    help='existing project/name ok, do not increment',
                )

                    '-src_path',
                    type=str,
                    default='/innovation_cfs/entertainment/VideoMashup/video_face_moviepy/10fps',
                )
                    '-map_path', type=str,
                    default='/innovation_cfs/entertainment/VideoMashup/video_map/transnetv2_duration_frameidx_moviepy',

                    '-overwrite', default=False, action="store_true"
                )  # whether overwrite the existing results


        Returns:
            Dict: _description_
        """
        video_info = detect(args, self.tracker, video_path, video_map, **kwds)
        return video_info