Spaces:
No application file
No application file
File size: 18,186 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/huggingface/diffusers/blob/64bf5d33b7ef1b1deac256bed7bd99b55020c4e0/src/diffusers/models/attention.py
from __future__ import annotations
from copy import deepcopy
from typing import Any, Dict, List, Literal, Optional, Callable, Tuple
import logging
from einops import rearrange
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention_processor import Attention as DiffusersAttention
from diffusers.models.attention import (
BasicTransformerBlock as DiffusersBasicTransformerBlock,
AdaLayerNormZero,
AdaLayerNorm,
FeedForward,
)
from diffusers.models.attention_processor import AttnProcessor
from .attention_processor import IPAttention, BaseIPAttnProcessor
logger = logging.getLogger(__name__)
def not_use_xformers_anyway(
use_memory_efficient_attention_xformers: bool,
attention_op: Optional[Callable] = None,
):
return None
@maybe_allow_in_graph
class BasicTransformerBlock(DiffusersBasicTransformerBlock):
print_idx = 0
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0,
cross_attention_dim: int | None = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: int | None = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm",
final_dropout: bool = False,
attention_type: str = "default",
allow_xformers: bool = True,
cross_attn_temporal_cond: bool = False,
image_scale: float = 1.0,
processor: AttnProcessor | None = None,
ip_adapter_cross_attn: bool = False,
need_t2i_facein: bool = False,
need_t2i_ip_adapter_face: bool = False,
):
if not only_cross_attention and double_self_attention:
cross_attention_dim = None
super().__init__(
dim,
num_attention_heads,
attention_head_dim,
dropout,
cross_attention_dim,
activation_fn,
num_embeds_ada_norm,
attention_bias,
only_cross_attention,
double_self_attention,
upcast_attention,
norm_elementwise_affine,
norm_type,
final_dropout,
attention_type,
)
self.attn1 = IPAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
cross_attn_temporal_cond=cross_attn_temporal_cond,
image_scale=image_scale,
ip_adapter_dim=cross_attention_dim
if only_cross_attention
else attention_head_dim,
facein_dim=cross_attention_dim
if only_cross_attention
else attention_head_dim,
processor=processor,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
)
self.attn2 = IPAttention(
query_dim=dim,
cross_attention_dim=cross_attention_dim
if not double_self_attention
else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_attn_temporal_cond=ip_adapter_cross_attn,
need_t2i_facein=need_t2i_facein,
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face,
image_scale=image_scale,
ip_adapter_dim=cross_attention_dim
if not double_self_attention
else attention_head_dim,
facein_dim=cross_attention_dim
if not double_self_attention
else attention_head_dim,
ip_adapter_face_dim=cross_attention_dim
if not double_self_attention
else attention_head_dim,
processor=processor,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
if self.attn1 is not None:
if not allow_xformers:
self.attn1.set_use_memory_efficient_attention_xformers = (
not_use_xformers_anyway
)
if self.attn2 is not None:
if not allow_xformers:
self.attn2.set_use_memory_efficient_attention_xformers = (
not_use_xformers_anyway
)
self.double_self_attention = double_self_attention
self.only_cross_attention = only_cross_attention
self.cross_attn_temporal_cond = cross_attn_temporal_cond
self.image_scale = image_scale
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
self_attn_block_embs: Optional[Tuple[List[torch.Tensor], List[None]]] = None,
self_attn_block_embs_mode: Literal["read", "write"] = "write",
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 1. Retrieve lora scale.
lora_scale = (
cross_attention_kwargs.get("scale", 1.0)
if cross_attention_kwargs is not None
else 1.0
)
if cross_attention_kwargs is None:
cross_attention_kwargs = {}
# 特殊AttnProcessor需要的入参 在 cross_attention_kwargs 准备
# special AttnProcessor needs input parameters in cross_attention_kwargs
original_cross_attention_kwargs = {
k: v
for k, v in cross_attention_kwargs.items()
if k
not in [
"num_frames",
"sample_index",
"vision_conditon_frames_sample_index",
"vision_cond",
"vision_clip_emb",
"ip_adapter_scale",
"face_emb",
"facein_scale",
"ip_adapter_face_emb",
"ip_adapter_face_scale",
"do_classifier_free_guidance",
]
}
if "do_classifier_free_guidance" in cross_attention_kwargs:
do_classifier_free_guidance = cross_attention_kwargs[
"do_classifier_free_guidance"
]
else:
do_classifier_free_guidance = False
# 2. Prepare GLIGEN inputs
original_cross_attention_kwargs = (
original_cross_attention_kwargs.copy()
if original_cross_attention_kwargs is not None
else {}
)
gligen_kwargs = original_cross_attention_kwargs.pop("gligen", None)
# 返回self_attn的结果,适用于referencenet的输出给其他Unet来使用
# return the result of self_attn, which is suitable for the output of referencenet to be used by other Unet
if (
self_attn_block_embs is not None
and self_attn_block_embs_mode.lower() == "write"
):
# self_attn_block_emb = self.attn1.head_to_batch_dim(attn_output, out_dim=4)
self_attn_block_emb = norm_hidden_states
if not hasattr(self, "spatial_self_attn_idx"):
raise ValueError(
"must call unet.insert_spatial_self_attn_idx to generate spatial attn index"
)
basick_transformer_idx = self.spatial_self_attn_idx
if self.print_idx == 0:
logger.debug(
f"self_attn_block_embs, self_attn_block_embs_mode={self_attn_block_embs_mode}, "
f"basick_transformer_idx={basick_transformer_idx}, length={len(self_attn_block_embs)}, shape={self_attn_block_emb.shape}, "
# f"attn1 processor, {type(self.attn1.processor)}"
)
self_attn_block_embs[basick_transformer_idx] = self_attn_block_emb
# read and put referencenet emb into cross_attention_kwargs, which would be fused into attn_processor
if (
self_attn_block_embs is not None
and self_attn_block_embs_mode.lower() == "read"
):
basick_transformer_idx = self.spatial_self_attn_idx
if not hasattr(self, "spatial_self_attn_idx"):
raise ValueError(
"must call unet.insert_spatial_self_attn_idx to generate spatial attn index"
)
if self.print_idx == 0:
logger.debug(
f"refer_self_attn_emb: , self_attn_block_embs_mode={self_attn_block_embs_mode}, "
f"length={len(self_attn_block_embs)}, idx={basick_transformer_idx}, "
# f"attn1 processor, {type(self.attn1.processor)}, "
)
ref_emb = self_attn_block_embs[basick_transformer_idx]
cross_attention_kwargs["refer_emb"] = ref_emb
if self.print_idx == 0:
logger.debug(
f"unet attention read, {self.spatial_self_attn_idx}",
)
# ------------------------------warning-----------------------
# 这两行由于使用了ref_emb会导致和checkpoint_train相关的训练错误,具体未知,留在这里作为警示
# bellow annoated code will cause training error, keep it here as a warning
# logger.debug(f"ref_emb shape,{ref_emb.shape}, {ref_emb.mean()}")
# logger.debug(
# f"norm_hidden_states shape, {norm_hidden_states.shape}, {norm_hidden_states.mean()}",
# )
if self.attn1 is None:
self.print_idx += 1
return norm_hidden_states
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if self.only_cross_attention
else None,
attention_mask=attention_mask,
**(
cross_attention_kwargs
if isinstance(self.attn1.processor, BaseIPAttnProcessor)
else original_cross_attention_kwargs
),
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
# 推断的时候,对于uncondition_部分独立生成,排除掉 refer_emb,
# 首帧等的影响,避免生成参考了refer_emb、首帧等,又在uncond上去除了
# in inference stage, eliminate influence of refer_emb, vis_cond on unconditionpart
# to avoid use that, and then eliminate in pipeline
# refer to moore-animate anyone
# do_classifier_free_guidance = False
if self.print_idx == 0:
logger.debug(f"do_classifier_free_guidance={do_classifier_free_guidance},")
if do_classifier_free_guidance:
hidden_states_c = attn_output.clone()
_uc_mask = (
torch.Tensor(
[1] * (norm_hidden_states.shape[0] // 2)
+ [0] * (norm_hidden_states.shape[0] // 2)
)
.to(norm_hidden_states.device)
.bool()
)
hidden_states_c[_uc_mask] = self.attn1(
norm_hidden_states[_uc_mask],
encoder_hidden_states=norm_hidden_states[_uc_mask],
attention_mask=attention_mask,
)
attn_output = hidden_states_c.clone()
if "refer_emb" in cross_attention_kwargs:
del cross_attention_kwargs["refer_emb"]
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 2.5 ends
# 3. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
# 特殊AttnProcessor需要的入参 在 cross_attention_kwargs 准备
# special AttnProcessor needs input parameters in cross_attention_kwargs
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if not self.double_self_attention
else None,
attention_mask=encoder_attention_mask,
**(
original_cross_attention_kwargs
if not isinstance(self.attn2.processor, BaseIPAttnProcessor)
else cross_attention_kwargs
),
)
if self.print_idx == 0:
logger.debug(
f"encoder_hidden_states, type={type(encoder_hidden_states)}"
)
if encoder_hidden_states is not None:
logger.debug(
f"encoder_hidden_states, ={encoder_hidden_states.shape}"
)
# encoder_hidden_states_tmp = (
# encoder_hidden_states
# if not self.double_self_attention
# else norm_hidden_states
# )
# if do_classifier_free_guidance:
# hidden_states_c = attn_output.clone()
# _uc_mask = (
# torch.Tensor(
# [1] * (norm_hidden_states.shape[0] // 2)
# + [0] * (norm_hidden_states.shape[0] // 2)
# )
# .to(norm_hidden_states.device)
# .bool()
# )
# hidden_states_c[_uc_mask] = self.attn2(
# norm_hidden_states[_uc_mask],
# encoder_hidden_states=encoder_hidden_states_tmp[_uc_mask],
# attention_mask=attention_mask,
# )
# attn_output = hidden_states_c.clone()
hidden_states = attn_output + hidden_states
# 4. Feed-forward
if self.norm3 is not None and self.ff is not None:
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = (
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
)
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = (
norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
)
ff_output = torch.cat(
[
self.ff(hid_slice, scale=lora_scale)
for hid_slice in norm_hidden_states.chunk(
num_chunks, dim=self._chunk_dim
)
],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
self.print_idx += 1
return hidden_states
|