Spaces:
No application file
No application file
File size: 28,712 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""该模型是自定义的attn_processor,实现特殊功能的 Attn功能。
相对而言,开源代码经常会重新定义Attention 类,
This module implements special AttnProcessor function with custom attn_processor class.
While other open source code always modify Attention class.
"""
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
from __future__ import annotations
import time
from typing import Any, Callable, Optional
import logging
from einops import rearrange, repeat
import torch
import torch.nn as nn
import torch.nn.functional as F
import xformers
from diffusers.models.lora import LoRACompatibleLinear
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention_processor import (
Attention as DiffusersAttention,
AttnProcessor,
AttnProcessor2_0,
)
from ..data.data_util import (
batch_concat_two_tensor_with_index,
batch_index_select,
align_repeat_tensor_single_dim,
batch_adain_conditioned_tensor,
)
from . import Model_Register
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
@maybe_allow_in_graph
class IPAttention(DiffusersAttention):
r"""
Modified Attention class which has special layer, like ip_apadapter_to_k, ip_apadapter_to_v,
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: int | None = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
cross_attention_norm: str | None = None,
cross_attention_norm_num_groups: int = 32,
added_kv_proj_dim: int | None = None,
norm_num_groups: int | None = None,
spatial_norm_dim: int | None = None,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 0.00001,
rescale_output_factor: float = 1,
residual_connection: bool = False,
_from_deprecated_attn_block=False,
processor: AttnProcessor | None = None,
cross_attn_temporal_cond: bool = False,
image_scale: float = 1.0,
ip_adapter_dim: int = None,
need_t2i_facein: bool = False,
facein_dim: int = None,
need_t2i_ip_adapter_face: bool = False,
ip_adapter_face_dim: int = None,
):
super().__init__(
query_dim,
cross_attention_dim,
heads,
dim_head,
dropout,
bias,
upcast_attention,
upcast_softmax,
cross_attention_norm,
cross_attention_norm_num_groups,
added_kv_proj_dim,
norm_num_groups,
spatial_norm_dim,
out_bias,
scale_qk,
only_cross_attention,
eps,
rescale_output_factor,
residual_connection,
_from_deprecated_attn_block,
processor,
)
self.cross_attn_temporal_cond = cross_attn_temporal_cond
self.image_scale = image_scale
# 面向首帧的 ip_adapter
# ip_apdater
if cross_attn_temporal_cond:
self.to_k_ip = LoRACompatibleLinear(ip_adapter_dim, query_dim, bias=False)
self.to_v_ip = LoRACompatibleLinear(ip_adapter_dim, query_dim, bias=False)
# facein
self.need_t2i_facein = need_t2i_facein
self.facein_dim = facein_dim
if need_t2i_facein:
raise NotImplementedError("facein")
# ip_adapter_face
self.need_t2i_ip_adapter_face = need_t2i_ip_adapter_face
self.ip_adapter_face_dim = ip_adapter_face_dim
if need_t2i_ip_adapter_face:
self.ip_adapter_face_to_k_ip = LoRACompatibleLinear(
ip_adapter_face_dim, query_dim, bias=False
)
self.ip_adapter_face_to_v_ip = LoRACompatibleLinear(
ip_adapter_face_dim, query_dim, bias=False
)
def set_use_memory_efficient_attention_xformers(
self,
use_memory_efficient_attention_xformers: bool,
attention_op: Callable[..., Any] | None = None,
):
if (
"XFormers" in self.processor.__class__.__name__
or "IP" in self.processor.__class__.__name__
):
pass
else:
return super().set_use_memory_efficient_attention_xformers(
use_memory_efficient_attention_xformers, attention_op
)
@Model_Register.register
class BaseIPAttnProcessor(nn.Module):
print_idx = 0
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
@Model_Register.register
class T2IReferencenetIPAdapterXFormersAttnProcessor(BaseIPAttnProcessor):
r"""
面向 ref_image的 self_attn的 IPAdapter
"""
print_idx = 0
def __init__(
self,
attention_op: Optional[Callable] = None,
):
super().__init__()
self.attention_op = attention_op
def __call__(
self,
attn: IPAttention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
num_frames: int = None,
sample_index: torch.LongTensor = None,
vision_conditon_frames_sample_index: torch.LongTensor = None,
refer_emb: torch.Tensor = None,
vision_clip_emb: torch.Tensor = None,
ip_adapter_scale: float = 1.0,
face_emb: torch.Tensor = None,
facein_scale: float = 1.0,
ip_adapter_face_emb: torch.Tensor = None,
ip_adapter_face_scale: float = 1.0,
do_classifier_free_guidance: bool = False,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, key_tokens, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(
attention_mask, key_tokens, batch_size
)
if attention_mask is not None:
# expand our mask's singleton query_tokens dimension:
# [batch*heads, 1, key_tokens] ->
# [batch*heads, query_tokens, key_tokens]
# so that it can be added as a bias onto the attention scores that xformers computes:
# [batch*heads, query_tokens, key_tokens]
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
_, query_tokens, _ = hidden_states.shape
attention_mask = attention_mask.expand(-1, query_tokens, -1)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states, scale=scale)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
encoder_hidden_states = align_repeat_tensor_single_dim(
encoder_hidden_states, target_length=hidden_states.shape[0], dim=0
)
key = attn.to_k(encoder_hidden_states, scale=scale)
value = attn.to_v(encoder_hidden_states, scale=scale)
# for facein
if self.print_idx == 0:
logger.debug(
f"T2IReferencenetIPAdapterXFormersAttnProcessor,type(face_emb)={type(face_emb)}, facein_scale={facein_scale}"
)
if facein_scale > 0 and face_emb is not None:
raise NotImplementedError("facein")
query = attn.head_to_batch_dim(query).contiguous()
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(
query,
key,
value,
attn_bias=attention_mask,
op=self.attention_op,
scale=attn.scale,
)
# ip-adapter start
if self.print_idx == 0:
logger.debug(
f"T2IReferencenetIPAdapterXFormersAttnProcessor,type(vision_clip_emb)={type(vision_clip_emb)}"
)
if ip_adapter_scale > 0 and vision_clip_emb is not None:
if self.print_idx == 0:
logger.debug(
f"T2I cross_attn, ipadapter, vision_clip_emb={vision_clip_emb.shape}, hidden_states={hidden_states.shape}, batch_size={batch_size}"
)
ip_key = attn.to_k_ip(vision_clip_emb)
ip_value = attn.to_v_ip(vision_clip_emb)
ip_key = align_repeat_tensor_single_dim(
ip_key, target_length=batch_size, dim=0
)
ip_value = align_repeat_tensor_single_dim(
ip_value, target_length=batch_size, dim=0
)
ip_key = attn.head_to_batch_dim(ip_key).contiguous()
ip_value = attn.head_to_batch_dim(ip_value).contiguous()
if self.print_idx == 0:
logger.debug(
f"query={query.shape}, ip_key={ip_key.shape}, ip_value={ip_value.shape}"
)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states_from_ip = xformers.ops.memory_efficient_attention(
query,
ip_key,
ip_value,
attn_bias=attention_mask,
op=self.attention_op,
scale=attn.scale,
)
hidden_states = hidden_states + ip_adapter_scale * hidden_states_from_ip
# ip-adapter end
# ip-adapter face start
if self.print_idx == 0:
logger.debug(
f"T2IReferencenetIPAdapterXFormersAttnProcessor,type(ip_adapter_face_emb)={type(ip_adapter_face_emb)}"
)
if ip_adapter_face_scale > 0 and ip_adapter_face_emb is not None:
if self.print_idx == 0:
logger.debug(
f"T2I cross_attn, ipadapter face, ip_adapter_face_emb={vision_clip_emb.shape}, hidden_states={hidden_states.shape}, batch_size={batch_size}"
)
ip_key = attn.ip_adapter_face_to_k_ip(ip_adapter_face_emb)
ip_value = attn.ip_adapter_face_to_v_ip(ip_adapter_face_emb)
ip_key = align_repeat_tensor_single_dim(
ip_key, target_length=batch_size, dim=0
)
ip_value = align_repeat_tensor_single_dim(
ip_value, target_length=batch_size, dim=0
)
ip_key = attn.head_to_batch_dim(ip_key).contiguous()
ip_value = attn.head_to_batch_dim(ip_value).contiguous()
if self.print_idx == 0:
logger.debug(
f"query={query.shape}, ip_key={ip_key.shape}, ip_value={ip_value.shape}"
)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states_from_ip = xformers.ops.memory_efficient_attention(
query,
ip_key,
ip_value,
attn_bias=attention_mask,
op=self.attention_op,
scale=attn.scale,
)
hidden_states = (
hidden_states + ip_adapter_face_scale * hidden_states_from_ip
)
# ip-adapter face end
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, scale=scale)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
self.print_idx += 1
return hidden_states
@Model_Register.register
class NonParamT2ISelfReferenceXFormersAttnProcessor(BaseIPAttnProcessor):
r"""
面向首帧的 referenceonly attn,适用于 T2I的 self_attn
referenceonly with vis_cond as key, value, in t2i self_attn.
"""
print_idx = 0
def __init__(
self,
attention_op: Optional[Callable] = None,
):
super().__init__()
self.attention_op = attention_op
def __call__(
self,
attn: IPAttention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
num_frames: int = None,
sample_index: torch.LongTensor = None,
vision_conditon_frames_sample_index: torch.LongTensor = None,
refer_emb: torch.Tensor = None,
face_emb: torch.Tensor = None,
vision_clip_emb: torch.Tensor = None,
ip_adapter_scale: float = 1.0,
facein_scale: float = 1.0,
ip_adapter_face_emb: torch.Tensor = None,
ip_adapter_face_scale: float = 1.0,
do_classifier_free_guidance: bool = False,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, key_tokens, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(
attention_mask, key_tokens, batch_size
)
if attention_mask is not None:
# expand our mask's singleton query_tokens dimension:
# [batch*heads, 1, key_tokens] ->
# [batch*heads, query_tokens, key_tokens]
# so that it can be added as a bias onto the attention scores that xformers computes:
# [batch*heads, query_tokens, key_tokens]
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
_, query_tokens, _ = hidden_states.shape
attention_mask = attention_mask.expand(-1, query_tokens, -1)
# vision_cond in same unet attn start
if (
vision_conditon_frames_sample_index is not None and num_frames > 1
) or refer_emb is not None:
batchsize_timesize = hidden_states.shape[0]
if self.print_idx == 0:
logger.debug(
f"NonParamT2ISelfReferenceXFormersAttnProcessor 0, hidden_states={hidden_states.shape}, vision_conditon_frames_sample_index={vision_conditon_frames_sample_index}"
)
encoder_hidden_states = rearrange(
hidden_states, "(b t) hw c -> b t hw c", t=num_frames
)
# if False:
if vision_conditon_frames_sample_index is not None and num_frames > 1:
ip_hidden_states = batch_index_select(
encoder_hidden_states,
dim=1,
index=vision_conditon_frames_sample_index,
).contiguous()
if self.print_idx == 0:
logger.debug(
f"NonParamT2ISelfReferenceXFormersAttnProcessor 1, vis_cond referenceonly, encoder_hidden_states={encoder_hidden_states.shape}, ip_hidden_states={ip_hidden_states.shape}"
)
#
ip_hidden_states = rearrange(
ip_hidden_states, "b t hw c -> b 1 (t hw) c"
)
ip_hidden_states = align_repeat_tensor_single_dim(
ip_hidden_states,
dim=1,
target_length=num_frames,
)
# b t hw c -> b t hw + hw c
if self.print_idx == 0:
logger.debug(
f"NonParamT2ISelfReferenceXFormersAttnProcessor 2, vis_cond referenceonly, encoder_hidden_states={encoder_hidden_states.shape}, ip_hidden_states={ip_hidden_states.shape}"
)
encoder_hidden_states = torch.concat(
[encoder_hidden_states, ip_hidden_states], dim=2
)
if self.print_idx == 0:
logger.debug(
f"NonParamT2ISelfReferenceXFormersAttnProcessor 3, hidden_states={hidden_states.shape}, ip_hidden_states={ip_hidden_states.shape}"
)
# if False:
if refer_emb is not None: # and num_frames > 1:
refer_emb = rearrange(refer_emb, "b c t h w->b 1 (t h w) c")
refer_emb = align_repeat_tensor_single_dim(
refer_emb, target_length=num_frames, dim=1
)
if self.print_idx == 0:
logger.debug(
f"NonParamT2ISelfReferenceXFormersAttnProcessor4, referencenet, encoder_hidden_states={encoder_hidden_states.shape}, refer_emb={refer_emb.shape}"
)
encoder_hidden_states = torch.concat(
[encoder_hidden_states, refer_emb], dim=2
)
if self.print_idx == 0:
logger.debug(
f"NonParamT2ISelfReferenceXFormersAttnProcessor5, referencenet, encoder_hidden_states={encoder_hidden_states.shape}, refer_emb={refer_emb.shape}"
)
encoder_hidden_states = rearrange(
encoder_hidden_states, "b t hw c -> (b t) hw c"
)
# vision_cond in same unet attn end
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states, scale=scale)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
encoder_hidden_states = align_repeat_tensor_single_dim(
encoder_hidden_states, target_length=hidden_states.shape[0], dim=0
)
key = attn.to_k(encoder_hidden_states, scale=scale)
value = attn.to_v(encoder_hidden_states, scale=scale)
query = attn.head_to_batch_dim(query).contiguous()
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(
query,
key,
value,
attn_bias=attention_mask,
op=self.attention_op,
scale=attn.scale,
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, scale=scale)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
self.print_idx += 1
return hidden_states
@Model_Register.register
class NonParamReferenceIPXFormersAttnProcessor(
NonParamT2ISelfReferenceXFormersAttnProcessor
):
def __init__(self, attention_op: Callable[..., Any] | None = None):
super().__init__(attention_op)
@maybe_allow_in_graph
class ReferEmbFuseAttention(IPAttention):
"""使用 attention 融合 refernet 中的 emb 到 unet 对应的 latens 中
# TODO: 目前只支持 bt hw c 的融合,后续考虑增加对 视频 bhw t c、b thw c的融合
residual_connection: bool = True, 默认, 从不产生影响开始学习
use attention to fuse referencenet emb into unet latents
# TODO: by now, only support bt hw c, later consider to support bhw t c, b thw c
residual_connection: bool = True, default, start from no effect
Args:
IPAttention (_type_): _description_
"""
print_idx = 0
def __init__(
self,
query_dim: int,
cross_attention_dim: int | None = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
cross_attention_norm: str | None = None,
cross_attention_norm_num_groups: int = 32,
added_kv_proj_dim: int | None = None,
norm_num_groups: int | None = None,
spatial_norm_dim: int | None = None,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 0.00001,
rescale_output_factor: float = 1,
residual_connection: bool = True,
_from_deprecated_attn_block=False,
processor: AttnProcessor | None = None,
cross_attn_temporal_cond: bool = False,
image_scale: float = 1,
):
super().__init__(
query_dim,
cross_attention_dim,
heads,
dim_head,
dropout,
bias,
upcast_attention,
upcast_softmax,
cross_attention_norm,
cross_attention_norm_num_groups,
added_kv_proj_dim,
norm_num_groups,
spatial_norm_dim,
out_bias,
scale_qk,
only_cross_attention,
eps,
rescale_output_factor,
residual_connection,
_from_deprecated_attn_block,
processor,
cross_attn_temporal_cond,
image_scale,
)
self.processor = None
# 配合residual,使一开始不影响之前结果
nn.init.zeros_(self.to_out[0].weight)
nn.init.zeros_(self.to_out[0].bias)
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
num_frames: int = None,
) -> torch.Tensor:
"""fuse referencenet emb b c t2 h2 w2 into unet latents b c t1 h1 w1 with attn
refer to musev/models/attention_processor.py::NonParamT2ISelfReferenceXFormersAttnProcessor
Args:
hidden_states (torch.FloatTensor): unet latents, (b t1) c h1 w1
encoder_hidden_states (Optional[torch.FloatTensor], optional): referencenet emb b c2 t2 h2 w2. Defaults to None.
attention_mask (Optional[torch.FloatTensor], optional): _description_. Defaults to None.
temb (Optional[torch.FloatTensor], optional): _description_. Defaults to None.
scale (float, optional): _description_. Defaults to 1.0.
num_frames (int, optional): _description_. Defaults to None.
Returns:
torch.Tensor: _description_
"""
residual = hidden_states
# start
hidden_states = rearrange(
hidden_states, "(b t) c h w -> b c t h w", t=num_frames
)
batch_size, channel, t1, height, width = hidden_states.shape
if self.print_idx == 0:
logger.debug(
f"hidden_states={hidden_states.shape},encoder_hidden_states={encoder_hidden_states.shape}"
)
# concat with hidden_states b c t1 h1 w1 in hw channel into bt (t2 + 1)hw c
encoder_hidden_states = rearrange(
encoder_hidden_states, " b c t2 h w-> b (t2 h w) c"
)
encoder_hidden_states = repeat(
encoder_hidden_states, " b t2hw c -> (b t) t2hw c", t=t1
)
hidden_states = rearrange(hidden_states, " b c t h w-> (b t) (h w) c")
# bt (t2+1)hw d
encoder_hidden_states = torch.concat(
[encoder_hidden_states, hidden_states], dim=1
)
# encoder_hidden_states = align_repeat_tensor_single_dim(
# encoder_hidden_states, target_length=hidden_states.shape[0], dim=0
# )
# end
if self.spatial_norm is not None:
hidden_states = self.spatial_norm(hidden_states, temb)
_, key_tokens, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
attention_mask = self.prepare_attention_mask(
attention_mask, key_tokens, batch_size
)
if attention_mask is not None:
# expand our mask's singleton query_tokens dimension:
# [batch*heads, 1, key_tokens] ->
# [batch*heads, query_tokens, key_tokens]
# so that it can be added as a bias onto the attention scores that xformers computes:
# [batch*heads, query_tokens, key_tokens]
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
_, query_tokens, _ = hidden_states.shape
attention_mask = attention_mask.expand(-1, query_tokens, -1)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = self.to_q(hidden_states, scale=scale)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(
encoder_hidden_states
)
key = self.to_k(encoder_hidden_states, scale=scale)
value = self.to_v(encoder_hidden_states, scale=scale)
query = self.head_to_batch_dim(query).contiguous()
key = self.head_to_batch_dim(key).contiguous()
value = self.head_to_batch_dim(value).contiguous()
# query: b t hw d
# key/value: bt (t1+1)hw d
hidden_states = xformers.ops.memory_efficient_attention(
query,
key,
value,
attn_bias=attention_mask,
scale=self.scale,
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states, scale=scale)
# dropout
hidden_states = self.to_out[1](hidden_states)
hidden_states = rearrange(
hidden_states,
"bt (h w) c-> bt c h w",
h=height,
w=width,
)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
self.print_idx += 1
return hidden_states
|