Spaces:
No application file
No application file
File size: 12,553 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import copy
from typing import Any, Callable, Dict, Iterable, Union
import PIL
import cv2
import torch
import argparse
import datetime
import logging
import inspect
import math
import os
import shutil
from typing import Dict, List, Optional, Tuple
from pprint import pprint
from collections import OrderedDict
from dataclasses import dataclass
import gc
import time
import numpy as np
from omegaconf import OmegaConf
from omegaconf import SCMode
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange, repeat
import pandas as pd
import h5py
from diffusers.models.modeling_utils import load_state_dict
from diffusers.utils import (
logging,
)
from diffusers.utils.import_utils import is_xformers_available
from mmcm.vision.feature_extractor import clip_vision_extractor
from mmcm.vision.feature_extractor.clip_vision_extractor import (
ImageClipVisionFeatureExtractor,
ImageClipVisionFeatureExtractorV2,
VerstailSDLastHiddenState2ImageEmb,
)
from ip_adapter.resampler import Resampler
from ip_adapter.ip_adapter import ImageProjModel
from .unet_loader import update_unet_with_sd
from .unet_3d_condition import UNet3DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def load_vision_clip_encoder_by_name(
ip_image_encoder: Tuple[str, nn.Module] = None,
dtype: torch.dtype = torch.float16,
device: str = "cuda",
vision_clip_extractor_class_name: str = None,
) -> nn.Module:
if vision_clip_extractor_class_name is not None:
vision_clip_extractor = getattr(
clip_vision_extractor, vision_clip_extractor_class_name
)(
pretrained_model_name_or_path=ip_image_encoder,
dtype=dtype,
device=device,
)
else:
vision_clip_extractor = None
return vision_clip_extractor
def load_ip_adapter_image_proj_by_name(
model_name: str,
ip_ckpt: Tuple[str, nn.Module] = None,
cross_attention_dim: int = 768,
clip_embeddings_dim: int = 1024,
clip_extra_context_tokens: int = 4,
ip_scale: float = 0.0,
dtype: torch.dtype = torch.float16,
device: str = "cuda",
unet: nn.Module = None,
vision_clip_extractor_class_name: str = None,
ip_image_encoder: Tuple[str, nn.Module] = None,
) -> nn.Module:
if model_name in [
"IPAdapter",
"musev_referencenet",
"musev_referencenet_pose",
]:
ip_adapter_image_proj = ImageProjModel(
cross_attention_dim=cross_attention_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens,
)
elif model_name == "IPAdapterPlus":
vision_clip_extractor = ImageClipVisionFeatureExtractorV2(
pretrained_model_name_or_path=ip_image_encoder,
dtype=dtype,
device=device,
)
ip_adapter_image_proj = Resampler(
dim=cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=clip_extra_context_tokens,
embedding_dim=vision_clip_extractor.image_encoder.config.hidden_size,
output_dim=cross_attention_dim,
ff_mult=4,
)
elif model_name in [
"VerstailSDLastHiddenState2ImageEmb",
"OriginLastHiddenState2ImageEmbd",
"OriginLastHiddenState2Poolout",
]:
ip_adapter_image_proj = getattr(
clip_vision_extractor, model_name
).from_pretrained(ip_image_encoder)
else:
raise ValueError(
f"unsupport model_name={model_name}, only support IPAdapter, IPAdapterPlus, VerstailSDLastHiddenState2ImageEmb"
)
if ip_ckpt is not None:
ip_adapter_state_dict = torch.load(
ip_ckpt,
map_location="cpu",
)
ip_adapter_image_proj.load_state_dict(ip_adapter_state_dict["image_proj"])
if (
unet is not None
and unet.ip_adapter_cross_attn
and "ip_adapter" in ip_adapter_state_dict
):
update_unet_ip_adapter_cross_attn_param(
unet, ip_adapter_state_dict["ip_adapter"]
)
logger.info(
f"update unet.spatial_cross_attn_ip_adapter parameter with {ip_ckpt}"
)
return ip_adapter_image_proj
def load_ip_adapter_vision_clip_encoder_by_name(
model_name: str,
ip_ckpt: Tuple[str, nn.Module],
ip_image_encoder: Tuple[str, nn.Module] = None,
cross_attention_dim: int = 768,
clip_embeddings_dim: int = 1024,
clip_extra_context_tokens: int = 4,
ip_scale: float = 0.0,
dtype: torch.dtype = torch.float16,
device: str = "cuda",
unet: nn.Module = None,
vision_clip_extractor_class_name: str = None,
) -> nn.Module:
if vision_clip_extractor_class_name is not None:
vision_clip_extractor = getattr(
clip_vision_extractor, vision_clip_extractor_class_name
)(
pretrained_model_name_or_path=ip_image_encoder,
dtype=dtype,
device=device,
)
else:
vision_clip_extractor = None
if model_name in [
"IPAdapter",
"musev_referencenet",
]:
if ip_image_encoder is not None:
if vision_clip_extractor_class_name is None:
vision_clip_extractor = ImageClipVisionFeatureExtractor(
pretrained_model_name_or_path=ip_image_encoder,
dtype=dtype,
device=device,
)
else:
vision_clip_extractor = None
ip_adapter_image_proj = ImageProjModel(
cross_attention_dim=cross_attention_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens,
)
elif model_name == "IPAdapterPlus":
if ip_image_encoder is not None:
if vision_clip_extractor_class_name is None:
vision_clip_extractor = ImageClipVisionFeatureExtractorV2(
pretrained_model_name_or_path=ip_image_encoder,
dtype=dtype,
device=device,
)
else:
vision_clip_extractor = None
ip_adapter_image_proj = Resampler(
dim=cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=clip_extra_context_tokens,
embedding_dim=vision_clip_extractor.image_encoder.config.hidden_size,
output_dim=cross_attention_dim,
ff_mult=4,
).to(dtype=torch.float16)
else:
raise ValueError(
f"unsupport model_name={model_name}, only support IPAdapter, IPAdapterPlus"
)
ip_adapter_state_dict = torch.load(
ip_ckpt,
map_location="cpu",
)
ip_adapter_image_proj.load_state_dict(ip_adapter_state_dict["image_proj"])
if (
unet is not None
and unet.ip_adapter_cross_attn
and "ip_adapter" in ip_adapter_state_dict
):
update_unet_ip_adapter_cross_attn_param(
unet, ip_adapter_state_dict["ip_adapter"]
)
logger.info(
f"update unet.spatial_cross_attn_ip_adapter parameter with {ip_ckpt}"
)
return (
vision_clip_extractor,
ip_adapter_image_proj,
)
# refer https://github.com/tencent-ailab/IP-Adapter/issues/168#issuecomment-1846771651
unet_keys_list = [
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor.to_v_ip.weight",
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_k_ip.weight",
"mid_block.attentions.0.transformer_blocks.0.attn2.processor.to_v_ip.weight",
]
ip_adapter_keys_list = [
"1.to_k_ip.weight",
"1.to_v_ip.weight",
"3.to_k_ip.weight",
"3.to_v_ip.weight",
"5.to_k_ip.weight",
"5.to_v_ip.weight",
"7.to_k_ip.weight",
"7.to_v_ip.weight",
"9.to_k_ip.weight",
"9.to_v_ip.weight",
"11.to_k_ip.weight",
"11.to_v_ip.weight",
"13.to_k_ip.weight",
"13.to_v_ip.weight",
"15.to_k_ip.weight",
"15.to_v_ip.weight",
"17.to_k_ip.weight",
"17.to_v_ip.weight",
"19.to_k_ip.weight",
"19.to_v_ip.weight",
"21.to_k_ip.weight",
"21.to_v_ip.weight",
"23.to_k_ip.weight",
"23.to_v_ip.weight",
"25.to_k_ip.weight",
"25.to_v_ip.weight",
"27.to_k_ip.weight",
"27.to_v_ip.weight",
"29.to_k_ip.weight",
"29.to_v_ip.weight",
"31.to_k_ip.weight",
"31.to_v_ip.weight",
]
UNET2IPAadapter_Keys_MAPIING = {
k: v for k, v in zip(unet_keys_list, ip_adapter_keys_list)
}
def update_unet_ip_adapter_cross_attn_param(
unet: UNet3DConditionModel, ip_adapter_state_dict: Dict
) -> None:
"""use independent ip_adapter attn 中的 to_k, to_v in unet
ip_adapter: dict whose keys are ['1.to_k_ip.weight', '1.to_v_ip.weight', '3.to_k_ip.weight']
Args:
unet (UNet3DConditionModel): _description_
ip_adapter_state_dict (Dict): _description_
"""
unet_spatial_cross_atnns = unet.spatial_cross_attns[0]
unet_spatial_cross_atnns_dct = {k: v for k, v in unet_spatial_cross_atnns}
for i, (unet_key_more, ip_adapter_key) in enumerate(
UNET2IPAadapter_Keys_MAPIING.items()
):
ip_adapter_value = ip_adapter_state_dict[ip_adapter_key]
unet_key_more_spit = unet_key_more.split(".")
unet_key = ".".join(unet_key_more_spit[:-3])
suffix = ".".join(unet_key_more_spit[-3:])
logger.debug(
f"{i}: unet_key_more = {unet_key_more}, {unet_key}=unet_key, suffix={suffix}",
)
if "to_k" in suffix:
with torch.no_grad():
unet_spatial_cross_atnns_dct[unet_key].to_k_ip.weight.copy_(
ip_adapter_value.data
)
else:
with torch.no_grad():
unet_spatial_cross_atnns_dct[unet_key].to_v_ip.weight.copy_(
ip_adapter_value.data
)
|