Spaces:
No application file
No application file
File size: 10,885 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import copy
from typing import Any, Callable, Dict, Iterable, Union
import PIL
import cv2
import torch
import argparse
import datetime
import logging
import inspect
import math
import os
import shutil
from typing import Dict, List, Optional, Tuple
from pprint import pprint
from collections import OrderedDict
from dataclasses import dataclass
import gc
import time
import numpy as np
from omegaconf import OmegaConf
from omegaconf import SCMode
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange, repeat
import pandas as pd
import h5py
from diffusers.models.modeling_utils import load_state_dict
from diffusers.utils import (
logging,
)
from diffusers.utils.import_utils import is_xformers_available
from ..models.unet_3d_condition import UNet3DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def update_unet_with_sd(
unet: nn.Module, sd_model: Tuple[str, nn.Module], subfolder: str = "unet"
):
"""更新T2V模型中的T2I参数. update t2i parameters in t2v model
Args:
unet (nn.Module): _description_
sd_model (Tuple[str, nn.Module]): _description_
Returns:
_type_: _description_
"""
# dtype = unet.dtype
# TODO: in this way, sd_model_path must be absolute path, to be more dynamic
if isinstance(sd_model, str):
if os.path.isdir(sd_model):
unet_state_dict = load_state_dict(
os.path.join(sd_model, subfolder, "diffusion_pytorch_model.bin"),
)
elif os.path.isfile(sd_model):
if sd_model.endswith("pth"):
unet_state_dict = torch.load(sd_model, map_location="cpu")
print(f"referencenet successful load ={sd_model} with torch.load")
else:
try:
unet_state_dict = load_state_dict(sd_model)
print(
f"referencenet successful load with {sd_model} with load_state_dict"
)
except Exception as e:
print(e)
elif isinstance(sd_model, nn.Module):
unet_state_dict = sd_model.state_dict()
else:
raise ValueError(f"given {type(sd_model)}, but only support nn.Module or str")
missing, unexpected = unet.load_state_dict(unet_state_dict, strict=False)
assert len(unexpected) == 0, f"unet load_state_dict error, unexpected={unexpected}"
# unet.to(dtype=dtype)
return unet
def load_unet(
sd_unet_model: Tuple[str, nn.Module],
sd_model: Tuple[str, nn.Module] = None,
cross_attention_dim: int = 768,
temporal_transformer: str = "TransformerTemporalModel",
temporal_conv_block: str = "TemporalConvLayer",
need_spatial_position_emb: bool = False,
need_transformer_in: bool = True,
need_t2i_ip_adapter: bool = False,
need_adain_temporal_cond: bool = False,
t2i_ip_adapter_attn_processor: str = "IPXFormersAttnProcessor",
keep_vision_condtion: bool = False,
use_anivv1_cfg: bool = False,
resnet_2d_skip_time_act: bool = False,
dtype: torch.dtype = torch.float16,
need_zero_vis_cond_temb: bool = True,
norm_spatial_length: bool = True,
spatial_max_length: int = 2048,
need_refer_emb: bool = False,
ip_adapter_cross_attn=False,
t2i_crossattn_ip_adapter_attn_processor="T2IReferencenetIPAdapterXFormersAttnProcessor",
need_t2i_facein: bool = False,
need_t2i_ip_adapter_face: bool = False,
strict: bool = True,
):
"""通过模型名字 初始化Unet,载入预训练参数. init unet with model_name.
该部分都是通过 models.unet_3d_condition.py:UNet3DConditionModel 定义、训练的模型
model is defined and trained in models.unet_3d_condition.py:UNet3DConditionModel
Args:
sd_unet_model (Tuple[str, nn.Module]): _description_
sd_model (Tuple[str, nn.Module]): _description_
cross_attention_dim (int, optional): _description_. Defaults to 768.
temporal_transformer (str, optional): _description_. Defaults to "TransformerTemporalModel".
temporal_conv_block (str, optional): _description_. Defaults to "TemporalConvLayer".
need_spatial_position_emb (bool, optional): _description_. Defaults to False.
need_transformer_in (bool, optional): _description_. Defaults to True.
need_t2i_ip_adapter (bool, optional): _description_. Defaults to False.
need_adain_temporal_cond (bool, optional): _description_. Defaults to False.
t2i_ip_adapter_attn_processor (str, optional): _description_. Defaults to "IPXFormersAttnProcessor".
keep_vision_condtion (bool, optional): _description_. Defaults to False.
use_anivv1_cfg (bool, optional): _description_. Defaults to False.
resnet_2d_skip_time_act (bool, optional): _description_. Defaults to False.
dtype (torch.dtype, optional): _description_. Defaults to torch.float16.
need_zero_vis_cond_temb (bool, optional): _description_. Defaults to True.
norm_spatial_length (bool, optional): _description_. Defaults to True.
spatial_max_length (int, optional): _description_. Defaults to 2048.
Returns:
_type_: _description_
"""
if isinstance(sd_unet_model, str):
unet = UNet3DConditionModel.from_pretrained_2d(
sd_unet_model,
subfolder="unet",
temporal_transformer=temporal_transformer,
temporal_conv_block=temporal_conv_block,
cross_attention_dim=cross_attention_dim,
need_spatial_position_emb=need_spatial_position_emb,
need_transformer_in=need_transformer_in,
need_t2i_ip_adapter=need_t2i_ip_adapter,
need_adain_temporal_cond=need_adain_temporal_cond,
t2i_ip_adapter_attn_processor=t2i_ip_adapter_attn_processor,
keep_vision_condtion=keep_vision_condtion,
use_anivv1_cfg=use_anivv1_cfg,
resnet_2d_skip_time_act=resnet_2d_skip_time_act,
torch_dtype=dtype,
need_zero_vis_cond_temb=need_zero_vis_cond_temb,
norm_spatial_length=norm_spatial_length,
spatial_max_length=spatial_max_length,
need_refer_emb=need_refer_emb,
ip_adapter_cross_attn=ip_adapter_cross_attn,
t2i_crossattn_ip_adapter_attn_processor=t2i_crossattn_ip_adapter_attn_processor,
need_t2i_facein=need_t2i_facein,
strict=strict,
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face,
)
elif isinstance(sd_unet_model, nn.Module):
unet = sd_unet_model
if sd_model is not None:
unet = update_unet_with_sd(unet, sd_model)
return unet
def load_unet_custom_unet(
sd_unet_model: Tuple[str, nn.Module],
sd_model: Tuple[str, nn.Module],
unet_class: nn.Module,
):
"""
通过模型名字 初始化Unet,载入预训练参数. init unet with model_name.
该部分都是通过 不通过models.unet_3d_condition.py:UNet3DConditionModel 定义、训练的模型
model is not defined in models.unet_3d_condition.py:UNet3DConditionModel
Args:
sd_unet_model (Tuple[str, nn.Module]): _description_
sd_model (Tuple[str, nn.Module]): _description_
unet_class (nn.Module): _description_
Returns:
_type_: _description_
"""
if isinstance(sd_unet_model, str):
unet = unet_class.from_pretrained(
sd_unet_model,
subfolder="unet",
)
elif isinstance(sd_unet_model, nn.Module):
unet = sd_unet_model
# TODO: in this way, sd_model_path must be absolute path, to be more dynamic
if isinstance(sd_model, str):
unet_state_dict = load_state_dict(
os.path.join(sd_model, "unet/diffusion_pytorch_model.bin"),
)
elif isinstance(sd_model, nn.Module):
unet_state_dict = sd_model.state_dict()
missing, unexpected = unet.load_state_dict(unet_state_dict, strict=False)
assert (
len(unexpected) == 0
), "unet load_state_dict error" # Load scheduler, tokenizer and models.
return unet
def load_unet_by_name(
model_name: str,
sd_unet_model: Tuple[str, nn.Module],
sd_model: Tuple[str, nn.Module] = None,
cross_attention_dim: int = 768,
dtype: torch.dtype = torch.float16,
need_t2i_facein: bool = False,
need_t2i_ip_adapter_face: bool = False,
strict: bool = True,
) -> nn.Module:
"""通过模型名字 初始化Unet,载入预训练参数. init unet with model_name.
如希望后续通过简单名字就可以使用预训练模型,需要在这里完成定义
if you want to use pretrained model with simple name, you need to define it here.
Args:
model_name (str): _description_
sd_unet_model (Tuple[str, nn.Module]): _description_
sd_model (Tuple[str, nn.Module]): _description_
cross_attention_dim (int, optional): _description_. Defaults to 768.
dtype (torch.dtype, optional): _description_. Defaults to torch.float16.
Raises:
ValueError: _description_
Returns:
nn.Module: _description_
"""
if model_name in ["musev"]:
unet = load_unet(
sd_unet_model=sd_unet_model,
sd_model=sd_model,
need_spatial_position_emb=False,
cross_attention_dim=cross_attention_dim,
need_t2i_ip_adapter=True,
need_adain_temporal_cond=True,
t2i_ip_adapter_attn_processor="NonParamReferenceIPXFormersAttnProcessor",
dtype=dtype,
)
elif model_name in [
"musev_referencenet",
"musev_referencenet_pose",
]:
unet = load_unet(
sd_unet_model=sd_unet_model,
sd_model=sd_model,
cross_attention_dim=cross_attention_dim,
temporal_conv_block="TemporalConvLayer",
need_transformer_in=False,
temporal_transformer="TransformerTemporalModel",
use_anivv1_cfg=True,
resnet_2d_skip_time_act=True,
need_t2i_ip_adapter=True,
need_adain_temporal_cond=True,
keep_vision_condtion=True,
t2i_ip_adapter_attn_processor="NonParamReferenceIPXFormersAttnProcessor",
dtype=dtype,
need_refer_emb=True,
need_zero_vis_cond_temb=True,
ip_adapter_cross_attn=True,
t2i_crossattn_ip_adapter_attn_processor="T2IReferencenetIPAdapterXFormersAttnProcessor",
need_t2i_facein=need_t2i_facein,
strict=strict,
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face,
)
else:
raise ValueError(
f"unsupport model_name={model_name}, only support musev, musev_referencenet, musev_referencenet_pose"
)
return unet
|