Spaces:
No application file
No application file
File size: 8,043 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Copyright (c) OpenMMLab. All rights reserved.
# from mmflow
import re
from io import BytesIO
from typing import Tuple
import cv2
import matplotlib.pyplot as plt
import mmcv
import numpy as np
from numpy import ndarray
def read_flow(name: str) -> np.ndarray:
"""Read flow file with the suffix '.flo'.
This function is modified from
https://lmb.informatik.uni-freiburg.de/resources/datasets/IO.py
Copyright (c) 2011, LMB, University of Freiburg.
Args:
name (str): Optical flow file path.
Returns:
ndarray: Optical flow
"""
with open(name, 'rb') as f:
header = f.read(4)
if header.decode('utf-8') != 'PIEH':
raise Exception('Flow file header does not contain PIEH')
width = np.fromfile(f, np.int32, 1).squeeze()
height = np.fromfile(f, np.int32, 1).squeeze()
flow = np.fromfile(f, np.float32, width * height * 2).reshape(
(height, width, 2))
return flow
def write_flow(flow: np.ndarray, flow_file: str) -> None:
"""Write the flow in disk.
This function is modified from
https://lmb.informatik.uni-freiburg.de/resources/datasets/IO.py
Copyright (c) 2011, LMB, University of Freiburg.
Args:
flow (ndarray): The optical flow that will be saved.
flow_file (str): The file for saving optical flow.
"""
with open(flow_file, 'wb') as f:
f.write('PIEH'.encode('utf-8'))
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
flow = flow.astype(np.float32)
flow.tofile(f)
def visualize_flow(flow: np.ndarray, save_file: str = None) -> np.ndarray:
"""Flow visualization function.
Args:
flow (ndarray): The flow will be render
save_dir ([type], optional): save dir. Defaults to None.
Returns:
ndarray: flow map image with RGB order.
"""
# return value from mmcv.flow2rgb is [0, 1.] with type np.float32
flow_map = np.uint8(mmcv.flow2rgb(flow) * 255.)
if save_file:
plt.imsave(save_file, flow_map)
return flow_map
def render_color_wheel(save_file: str = 'color_wheel.png') -> np.ndarray:
"""Render color wheel.
Args:
save_file (str): The saved file name . Defaults to 'color_wheel.png'.
Returns:
ndarray: color wheel image.
"""
x0 = 75
y0 = 75
height = 151
width = 151
flow = np.zeros((height, width, 2), dtype=np.float32)
grid_x = np.tile(np.expand_dims(np.arange(width), 0), [height, 1])
grid_y = np.tile(np.expand_dims(np.arange(height), 1), [1, width])
grid_x0 = np.tile(np.array([x0]), [height, width])
grid_y0 = np.tile(np.array([y0]), [height, width])
flow[:, :, 0] = grid_x - grid_x0
flow[:, :, 1] = grid_y - grid_y0
return visualize_flow(flow, save_file)
def read_flow_kitti(name: str) -> Tuple[np.ndarray, np.ndarray]:
"""Read sparse flow file from KITTI dataset.
This function is modified from
https://github.com/princeton-vl/RAFT/blob/master/core/utils/frame_utils.py.
Copyright (c) 2020, princeton-vl
Licensed under the BSD 3-Clause License
Args:
name (str): The flow file
Returns:
Tuple[ndarray, ndarray]: flow and valid map
"""
# to specify not to change the image depth (16bit)
flow = cv2.imread(name, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
flow = flow[:, :, ::-1].astype(np.float32)
# flow shape (H, W, 2) valid shape (H, W)
flow, valid = flow[:, :, :2], flow[:, :, 2]
flow = (flow - 2**15) / 64.0
return flow, valid
def write_flow_kitti(uv: np.ndarray, filename: str):
"""Write the flow in disk.
This function is modified from
https://github.com/princeton-vl/RAFT/blob/master/core/utils/frame_utils.py.
Copyright (c) 2020, princeton-vl
Licensed under the BSD 3-Clause License
Args:
uv (ndarray): The optical flow that will be saved.
filename ([type]): The file for saving optical flow.
"""
uv = 64.0 * uv + 2**15
valid = np.ones([uv.shape[0], uv.shape[1], 1])
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
cv2.imwrite(filename, uv[..., ::-1])
def flow_from_bytes(content: bytes, suffix: str = 'flo') -> ndarray:
"""Read dense optical flow from bytes.
.. note::
This load optical flow function works for FlyingChairs, FlyingThings3D,
Sintel, FlyingChairsOcc datasets, but cannot load the data from
ChairsSDHom.
Args:
content (bytes): Optical flow bytes got from files or other streams.
Returns:
ndarray: Loaded optical flow with the shape (H, W, 2).
"""
assert suffix in ('flo', 'pfm'), 'suffix of flow file must be `flo` '\
f'or `pfm`, but got {suffix}'
if suffix == 'flo':
return flo_from_bytes(content)
else:
return pfm_from_bytes(content)
def flo_from_bytes(content: bytes):
"""Decode bytes based on flo file.
Args:
content (bytes): Optical flow bytes got from files or other streams.
Returns:
ndarray: Loaded optical flow with the shape (H, W, 2).
"""
# header in first 4 bytes
header = content[:4]
if header != b'PIEH':
raise Exception('Flow file header does not contain PIEH')
# width in second 4 bytes
width = np.frombuffer(content[4:], np.int32, 1).squeeze()
# height in third 4 bytes
height = np.frombuffer(content[8:], np.int32, 1).squeeze()
# after first 12 bytes, all bytes are flow
flow = np.frombuffer(content[12:], np.float32, width * height * 2).reshape(
(height, width, 2))
return flow
def pfm_from_bytes(content: bytes) -> np.ndarray:
"""Load the file with the suffix '.pfm'.
Args:
content (bytes): Optical flow bytes got from files or other streams.
Returns:
ndarray: The loaded data
"""
file = BytesIO(content)
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == b'PF':
color = True
elif header == b'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.frombuffer(file.read(), endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data[:, :, :-1]
def read_pfm(file: str) -> np.ndarray:
"""Load the file with the suffix '.pfm'.
This function is modified from
https://lmb.informatik.uni-freiburg.de/resources/datasets/IO.py
Copyright (c) 2011, LMB, University of Freiburg.
Args:
file (str): The file name will be loaded
Returns:
ndarray: The loaded data
"""
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode('ascii') == 'PF':
color = True
elif header.decode('ascii') == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('ascii'))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().decode('ascii').rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data[:, :, :-1]
|