Spaces:
No application file
No application file
# -*- coding: utf-8 -*- | |
import inspect | |
from typing import Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from torch.nn import functional as F | |
from torchvision import transforms | |
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.utils import PIL_INTERPOLATION | |
from diffusers.utils.torch_utils import randn_tensor | |
def preprocess(image, w, h): | |
if isinstance(image, torch.Tensor): | |
return image | |
elif isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
return image | |
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): | |
if not isinstance(v0, np.ndarray): | |
inputs_are_torch = True | |
input_device = v0.device | |
v0 = v0.cpu().numpy() | |
v1 = v1.cpu().numpy() | |
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) | |
if np.abs(dot) > DOT_THRESHOLD: | |
v2 = (1 - t) * v0 + t * v1 | |
else: | |
theta_0 = np.arccos(dot) | |
sin_theta_0 = np.sin(theta_0) | |
theta_t = theta_0 * t | |
sin_theta_t = np.sin(theta_t) | |
s0 = np.sin(theta_0 - theta_t) / sin_theta_0 | |
s1 = sin_theta_t / sin_theta_0 | |
v2 = s0 * v0 + s1 * v1 | |
if inputs_are_torch: | |
v2 = torch.from_numpy(v2).to(input_device) | |
return v2 | |
def spherical_dist_loss(x, y): | |
x = F.normalize(x, dim=-1) | |
y = F.normalize(y, dim=-1) | |
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) | |
def set_requires_grad(model, value): | |
for param in model.parameters(): | |
param.requires_grad = value | |
class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
clip_model: CLIPModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], | |
feature_extractor: CLIPFeatureExtractor, | |
coca_model=None, | |
coca_tokenizer=None, | |
coca_transform=None, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
clip_model=clip_model, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
feature_extractor=feature_extractor, | |
coca_model=coca_model, | |
coca_tokenizer=coca_tokenizer, | |
coca_transform=coca_transform, | |
) | |
self.feature_extractor_size = ( | |
feature_extractor.size | |
if isinstance(feature_extractor.size, int) | |
else feature_extractor.size["shortest_edge"] | |
) | |
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) | |
set_requires_grad(self.text_encoder, False) | |
set_requires_grad(self.clip_model, False) | |
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = self.unet.config.attention_head_dim // 2 | |
self.unet.set_attention_slice(slice_size) | |
def disable_attention_slicing(self): | |
self.enable_attention_slicing(None) | |
def freeze_vae(self): | |
set_requires_grad(self.vae, False) | |
def unfreeze_vae(self): | |
set_requires_grad(self.vae, True) | |
def freeze_unet(self): | |
set_requires_grad(self.unet, False) | |
def unfreeze_unet(self): | |
set_requires_grad(self.unet, True) | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start:] | |
return timesteps, num_inference_steps - t_start | |
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None): | |
if not isinstance(image, torch.Tensor): | |
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(image)}") | |
image = image.to(device=device, dtype=dtype) | |
if isinstance(generator, list): | |
init_latents = [ | |
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor | |
init_latents = 0.18215 * init_latents | |
init_latents = init_latents.repeat_interleave(batch_size, dim=0) | |
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
latents = init_latents | |
return latents | |
def get_image_description(self, image): | |
transformed_image = self.coca_transform(image).unsqueeze(0) | |
with torch.no_grad(), torch.cuda.amp.autocast(): | |
generated = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) | |
generated = self.coca_tokenizer.decode(generated[0].cpu().numpy()) | |
return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,") | |
def get_clip_image_embeddings(self, image, batch_size): | |
clip_image_input = self.feature_extractor.preprocess(image) | |
clip_image_features = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half() | |
image_embeddings_clip = self.clip_model.get_image_features(clip_image_features) | |
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) | |
image_embeddings_clip = image_embeddings_clip.repeat_interleave(batch_size, dim=0) | |
return image_embeddings_clip | |
def cond_fn( | |
self, | |
latents, | |
timestep, | |
index, | |
text_embeddings, | |
noise_pred_original, | |
original_image_embeddings_clip, | |
clip_guidance_scale, | |
): | |
latents = latents.detach().requires_grad_() | |
latent_model_input = self.scheduler.scale_model_input(latents, timestep) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample | |
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
# compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) | |
fac = torch.sqrt(beta_prod_t) | |
sample = pred_original_sample * (fac) + latents * (1 - fac) | |
elif isinstance(self.scheduler, LMSDiscreteScheduler): | |
sigma = self.scheduler.sigmas[index] | |
sample = latents - sigma * noise_pred | |
else: | |
raise ValueError(f"scheduler type {type(self.scheduler)} not supported") | |
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor | |
sample = 1 / 0.18215 * sample | |
image = self.vae.decode(sample).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = transforms.Resize(self.feature_extractor_size)(image) | |
image = self.normalize(image).to(latents.dtype) | |
image_embeddings_clip = self.clip_model.get_image_features(image) | |
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) | |
loss = spherical_dist_loss(image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale | |
grads = -torch.autograd.grad(loss, latents)[0] | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
latents = latents.detach() + grads * (sigma**2) | |
noise_pred = noise_pred_original | |
else: | |
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads | |
return noise_pred, latents | |
def __call__( | |
self, | |
style_image: Union[torch.FloatTensor, PIL.Image.Image], | |
content_image: Union[torch.FloatTensor, PIL.Image.Image], | |
style_prompt: Optional[str] = None, | |
content_prompt: Optional[str] = None, | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
noise_strength: float = 0.6, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
batch_size: Optional[int] = 1, | |
eta: float = 0.0, | |
clip_guidance_scale: Optional[float] = 100, | |
generator: Optional[torch.Generator] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
slerp_latent_style_strength: float = 0.8, | |
slerp_prompt_style_strength: float = 0.1, | |
slerp_clip_image_style_strength: float = 0.1, | |
): | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(generator)} generators.") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if isinstance(generator, torch.Generator) and batch_size > 1: | |
generator = [generator] + [None] * (batch_size - 1) | |
coca_is_none = [ | |
("model", self.coca_model is None), | |
("tokenizer", self.coca_tokenizer is None), | |
("transform", self.coca_transform is None), | |
] | |
coca_is_none = [x[0] for x in coca_is_none if x[1]] | |
coca_is_none_str = ", ".join(coca_is_none) | |
# generate prompts with coca model if prompt is None | |
if content_prompt is None: | |
if len(coca_is_none): | |
raise ValueError( | |
f"Content prompt is None and CoCa [{coca_is_none_str}] is None." | |
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." | |
) | |
content_prompt = self.get_image_description(content_image) | |
if style_prompt is None: | |
if len(coca_is_none): | |
raise ValueError( | |
f"Style prompt is None and CoCa [{coca_is_none_str}] is None." | |
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." | |
) | |
style_prompt = self.get_image_description(style_image) | |
# get prompt text embeddings for content and style | |
content_text_input = self.tokenizer( | |
content_prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
content_text_embeddings = self.text_encoder(content_text_input.input_ids.to(self.device))[0] | |
style_text_input = self.tokenizer( | |
style_prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
style_text_embeddings = self.text_encoder(style_text_input.input_ids.to(self.device))[0] | |
text_embeddings = slerp(slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings) | |
# duplicate text embeddings for each generation per prompt | |
text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0) | |
# set timesteps | |
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) | |
extra_set_kwargs = {} | |
if accepts_offset: | |
extra_set_kwargs["offset"] = 1 | |
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
# Some schedulers like PNDM have timesteps as arrays | |
# It's more optimized to move all timesteps to correct device beforehand | |
self.scheduler.timesteps.to(self.device) | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, noise_strength, self.device) | |
latent_timestep = timesteps[:1].repeat(batch_size) | |
# Preprocess image | |
preprocessed_content_image = preprocess(content_image, width, height) | |
content_latents = self.prepare_latents( | |
preprocessed_content_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator | |
) | |
preprocessed_style_image = preprocess(style_image, width, height) | |
style_latents = self.prepare_latents( | |
preprocessed_style_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator | |
) | |
latents = slerp(slerp_latent_style_strength, content_latents, style_latents) | |
if clip_guidance_scale > 0: | |
content_clip_image_embedding = self.get_clip_image_embeddings(content_image, batch_size) | |
style_clip_image_embedding = self.get_clip_image_embeddings(style_image, batch_size) | |
clip_image_embeddings = slerp( | |
slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding | |
) | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
max_length = content_text_input.input_ids.shape[-1] | |
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# duplicate unconditional embeddings for each generation per prompt | |
uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size, dim=0) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# get the initial random noise unless the user supplied it | |
# Unlike in other pipelines, latents need to be generated in the target device | |
# for 1-to-1 results reproducibility with the CompVis implementation. | |
# However this currently doesn't work in `mps`. | |
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) | |
latents_dtype = text_embeddings.dtype | |
if latents is None: | |
if self.device.type == "mps": | |
# randn does not work reproducibly on mps | |
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( | |
self.device | |
) | |
else: | |
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) | |
else: | |
if latents.shape != latents_shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
latents = latents.to(self.device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform classifier free guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# perform clip guidance | |
if clip_guidance_scale > 0: | |
text_embeddings_for_guidance = ( | |
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings | |
) | |
noise_pred, latents = self.cond_fn( | |
latents, | |
t, | |
i, | |
text_embeddings_for_guidance, | |
noise_pred, | |
clip_image_embeddings, | |
clip_guidance_scale, | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
progress_bar.update() | |
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, None) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) | |