Spaces:
No application file
No application file
# Based on stable_diffusion_reference.py | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers.models.attention import BasicTransformerBlock | |
from diffusers.models.unet_2d_blocks import ( | |
CrossAttnDownBlock2D, | |
CrossAttnUpBlock2D, | |
DownBlock2D, | |
UpBlock2D, | |
) | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
from diffusers.utils import PIL_INTERPOLATION, logging | |
from diffusers.utils.torch_utils import randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import UniPCMultistepScheduler | |
>>> from diffusers.utils import load_image | |
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") | |
>>> pipe = StableDiffusionXLReferencePipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16").to('cuda:0') | |
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
>>> result_img = pipe(ref_image=input_image, | |
prompt="1girl", | |
num_inference_steps=20, | |
reference_attn=True, | |
reference_adain=True).images[0] | |
>>> result_img.show() | |
``` | |
""" | |
def torch_dfs(model: torch.nn.Module): | |
result = [model] | |
for child in model.children(): | |
result += torch_dfs(child) | |
return result | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline): | |
def _default_height_width(self, height, width, image): | |
# NOTE: It is possible that a list of images have different | |
# dimensions for each image, so just checking the first image | |
# is not _exactly_ correct, but it is simple. | |
while isinstance(image, list): | |
image = image[0] | |
if height is None: | |
if isinstance(image, PIL.Image.Image): | |
height = image.height | |
elif isinstance(image, torch.Tensor): | |
height = image.shape[2] | |
height = (height // 8) * 8 # round down to nearest multiple of 8 | |
if width is None: | |
if isinstance(image, PIL.Image.Image): | |
width = image.width | |
elif isinstance(image, torch.Tensor): | |
width = image.shape[3] | |
width = (width // 8) * 8 | |
return height, width | |
def prepare_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
guess_mode=False, | |
): | |
if not isinstance(image, torch.Tensor): | |
if isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
images = [] | |
for image_ in image: | |
image_ = image_.convert("RGB") | |
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) | |
image_ = np.array(image_) | |
image_ = image_[None, :] | |
images.append(image_) | |
image = images | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = (image - 0.5) / 0.5 | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.stack(image, dim=0) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance and not guess_mode: | |
image = torch.cat([image] * 2) | |
return image | |
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance): | |
refimage = refimage.to(device=device) | |
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
self.upcast_vae() | |
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
if refimage.dtype != self.vae.dtype: | |
refimage = refimage.to(dtype=self.vae.dtype) | |
# encode the mask image into latents space so we can concatenate it to the latents | |
if isinstance(generator, list): | |
ref_image_latents = [ | |
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(batch_size) | |
] | |
ref_image_latents = torch.cat(ref_image_latents, dim=0) | |
else: | |
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) | |
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents | |
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method | |
if ref_image_latents.shape[0] < batch_size: | |
if not batch_size % ref_image_latents.shape[0] == 0: | |
raise ValueError( | |
"The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." | |
" Make sure the number of images that you pass is divisible by the total requested batch size." | |
) | |
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) | |
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents | |
# aligning device to prevent device errors when concating it with the latent model input | |
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) | |
return ref_image_latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
attention_auto_machine_weight: float = 1.0, | |
gn_auto_machine_weight: float = 1.0, | |
style_fidelity: float = 0.5, | |
reference_attn: bool = True, | |
reference_adain: bool = True, | |
): | |
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True." | |
# 0. Default height and width to unet | |
# height, width = self._default_height_width(height, width, ref_image) | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Preprocess reference image | |
ref_image = self.prepare_image( | |
image=ref_image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=prompt_embeds.dtype, | |
) | |
# 5. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Prepare reference latent variables | |
ref_image_latents = self.prepare_ref_latents( | |
ref_image, | |
batch_size * num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
do_classifier_free_guidance, | |
) | |
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 9. Modify self attebtion and group norm | |
MODE = "write" | |
uc_mask = ( | |
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) | |
.type_as(ref_image_latents) | |
.bool() | |
) | |
def hacked_basic_transformer_inner_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
): | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Self-Attention | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
if self.only_cross_attention: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
if MODE == "write": | |
self.bank.append(norm_hidden_states.detach().clone()) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if MODE == "read": | |
if attention_auto_machine_weight > self.attn_weight: | |
attn_output_uc = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), | |
# attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
attn_output_c = attn_output_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
attn_output_c[uc_mask] = self.attn1( | |
norm_hidden_states[uc_mask], | |
encoder_hidden_states=norm_hidden_states[uc_mask], | |
**cross_attention_kwargs, | |
) | |
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc | |
self.bank.clear() | |
else: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
# 2. Cross-Attention | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
def hacked_mid_forward(self, *args, **kwargs): | |
eps = 1e-6 | |
x = self.original_forward(*args, **kwargs) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append(mean) | |
self.var_bank.append(var) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) | |
var_acc = sum(self.var_bank) / float(len(self.var_bank)) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
x_uc = (((x - mean) / std) * std_acc) + mean_acc | |
x_c = x_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
x_c[uc_mask] = x[uc_mask] | |
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc | |
self.mean_bank = [] | |
self.var_bank = [] | |
return x | |
def hack_CrossAttnDownBlock2D_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
): | |
eps = 1e-6 | |
# TODO(Patrick, William) - attention mask is not used | |
output_states = () | |
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
output_states = output_states + (hidden_states,) | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def hacked_DownBlock2D_forward(self, hidden_states, temb=None): | |
eps = 1e-6 | |
output_states = () | |
for i, resnet in enumerate(self.resnets): | |
hidden_states = resnet(hidden_states, temb) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
output_states = output_states + (hidden_states,) | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def hacked_CrossAttnUpBlock2D_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
): | |
eps = 1e-6 | |
# TODO(Patrick, William) - attention mask is not used | |
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
eps = 1e-6 | |
for i, resnet in enumerate(self.resnets): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
if reference_attn: | |
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] | |
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) | |
for i, module in enumerate(attn_modules): | |
module._original_inner_forward = module.forward | |
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) | |
module.bank = [] | |
module.attn_weight = float(i) / float(len(attn_modules)) | |
if reference_adain: | |
gn_modules = [self.unet.mid_block] | |
self.unet.mid_block.gn_weight = 0 | |
down_blocks = self.unet.down_blocks | |
for w, module in enumerate(down_blocks): | |
module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) | |
gn_modules.append(module) | |
up_blocks = self.unet.up_blocks | |
for w, module in enumerate(up_blocks): | |
module.gn_weight = float(w) / float(len(up_blocks)) | |
gn_modules.append(module) | |
for i, module in enumerate(gn_modules): | |
if getattr(module, "original_forward", None) is None: | |
module.original_forward = module.forward | |
if i == 0: | |
# mid_block | |
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) | |
elif isinstance(module, CrossAttnDownBlock2D): | |
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) | |
elif isinstance(module, DownBlock2D): | |
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) | |
elif isinstance(module, CrossAttnUpBlock2D): | |
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) | |
elif isinstance(module, UpBlock2D): | |
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) | |
module.mean_bank = [] | |
module.var_bank = [] | |
module.gn_weight *= 2 | |
# 10. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
add_time_ids = self._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
# 11. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
# 10.1 Apply denoising_end | |
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (denoising_end * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
timesteps = timesteps[:num_inference_steps] | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
# ref only part | |
noise = randn_tensor( | |
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype | |
) | |
ref_xt = self.scheduler.add_noise( | |
ref_image_latents, | |
noise, | |
t.reshape( | |
1, | |
), | |
) | |
ref_xt = self.scheduler.scale_model_input(ref_xt, t) | |
MODE = "write" | |
self.unet( | |
ref_xt, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
) | |
# predict the noise residual | |
MODE = "read" | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
if needs_upcasting: | |
self.upcast_vae() | |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
self.vae.to(dtype=torch.float16) | |
else: | |
image = latents | |
return StableDiffusionXLPipelineOutput(images=image) | |
# apply watermark if available | |
if self.watermark is not None: | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |