Spaces:
No application file
No application file
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc.. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import os | |
import shutil | |
import subprocess | |
import sys | |
import tempfile | |
import unittest | |
from typing import List | |
import safetensors | |
from accelerate.utils import write_basic_config | |
from diffusers import DiffusionPipeline, UNet2DConditionModel | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
# These utils relate to ensuring the right error message is received when running scripts | |
class SubprocessCallException(Exception): | |
pass | |
def run_command(command: List[str], return_stdout=False): | |
""" | |
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture | |
if an error occurred while running `command` | |
""" | |
try: | |
output = subprocess.check_output(command, stderr=subprocess.STDOUT) | |
if return_stdout: | |
if hasattr(output, "decode"): | |
output = output.decode("utf-8") | |
return output | |
except subprocess.CalledProcessError as e: | |
raise SubprocessCallException( | |
f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}" | |
) from e | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class ExamplesTestsAccelerate(unittest.TestCase): | |
def setUpClass(cls): | |
super().setUpClass() | |
cls._tmpdir = tempfile.mkdtemp() | |
cls.configPath = os.path.join(cls._tmpdir, "default_config.yml") | |
write_basic_config(save_location=cls.configPath) | |
cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath] | |
def tearDownClass(cls): | |
super().tearDownClass() | |
shutil.rmtree(cls._tmpdir) | |
def test_train_unconditional(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/unconditional_image_generation/train_unconditional.py | |
--dataset_name hf-internal-testing/dummy_image_class_data | |
--model_config_name_or_path diffusers/ddpm_dummy | |
--resolution 64 | |
--output_dir {tmpdir} | |
--train_batch_size 2 | |
--num_epochs 1 | |
--gradient_accumulation_steps 1 | |
--ddpm_num_inference_steps 2 | |
--learning_rate 1e-3 | |
--lr_warmup_steps 5 | |
""".split() | |
run_command(self._launch_args + test_args, return_stdout=True) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
def test_textual_inversion(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/textual_inversion/textual_inversion.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--train_data_dir docs/source/en/imgs | |
--learnable_property object | |
--placeholder_token <cat-toy> | |
--initializer_token a | |
--validation_prompt <cat-toy> | |
--validation_steps 1 | |
--save_steps 1 | |
--num_vectors 2 | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.safetensors"))) | |
def test_dreambooth(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
def test_dreambooth_if(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-if-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--pre_compute_text_embeddings | |
--tokenizer_max_length=77 | |
--text_encoder_use_attention_mask | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
def test_dreambooth_checkpointing(self): | |
instance_prompt = "photo" | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 5, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/dreambooth/train_dreambooth.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt {instance_prompt} | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 5 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
# check can run the original fully trained output pipeline | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(instance_prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
# check can run an intermediate checkpoint | |
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
pipe(instance_prompt, num_inference_steps=2) | |
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
# Run training script for 7 total steps resuming from checkpoint 4 | |
resume_run_args = f""" | |
examples/dreambooth/train_dreambooth.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt {instance_prompt} | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-4 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check can run new fully trained pipeline | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(instance_prompt, num_inference_steps=2) | |
# check old checkpoints do not exist | |
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
# check new checkpoints exist | |
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) | |
def test_dreambooth_lora(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
# make sure the state_dict has the correct naming in the parameters. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
self.assertTrue(is_lora) | |
# when not training the text encoder, all the parameters in the state dict should start | |
# with `"unet"` in their names. | |
starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys()) | |
self.assertTrue(starts_with_unet) | |
def test_dreambooth_lora_with_text_encoder(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--train_text_encoder | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
# check `text_encoder` is present at all. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
keys = lora_state_dict.keys() | |
is_text_encoder_present = any(k.startswith("text_encoder") for k in keys) | |
self.assertTrue(is_text_encoder_present) | |
# the names of the keys of the state dict should either start with `unet` | |
# or `text_encoder`. | |
is_correct_naming = all(k.startswith("unet") or k.startswith("text_encoder") for k in keys) | |
self.assertTrue(is_correct_naming) | |
def test_dreambooth_lora_if_model(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-if-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--pre_compute_text_embeddings | |
--tokenizer_max_length=77 | |
--text_encoder_use_attention_mask | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
# make sure the state_dict has the correct naming in the parameters. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
self.assertTrue(is_lora) | |
# when not training the text encoder, all the parameters in the state dict should start | |
# with `"unet"` in their names. | |
starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys()) | |
self.assertTrue(starts_with_unet) | |
def test_dreambooth_lora_sdxl(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora_sdxl.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
# make sure the state_dict has the correct naming in the parameters. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
self.assertTrue(is_lora) | |
# when not training the text encoder, all the parameters in the state dict should start | |
# with `"unet"` in their names. | |
starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys()) | |
self.assertTrue(starts_with_unet) | |
def test_dreambooth_lora_sdxl_with_text_encoder(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora_sdxl.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--train_text_encoder | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
# make sure the state_dict has the correct naming in the parameters. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
self.assertTrue(is_lora) | |
# when not training the text encoder, all the parameters in the state dict should start | |
# with `"unet"` or `"text_encoder"` or `"text_encoder_2"` in their names. | |
keys = lora_state_dict.keys() | |
starts_with_unet = all( | |
k.startswith("unet") or k.startswith("text_encoder") or k.startswith("text_encoder_2") for k in keys | |
) | |
self.assertTrue(starts_with_unet) | |
def test_dreambooth_lora_sdxl_custom_captions(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora_sdxl.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--caption_column text | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
def test_dreambooth_lora_sdxl_text_encoder_custom_captions(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora_sdxl.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--caption_column text | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--train_text_encoder | |
""".split() | |
run_command(self._launch_args + test_args) | |
def test_dreambooth_lora_sdxl_checkpointing_checkpoints_total_limit(self): | |
pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora_sdxl.py | |
--pretrained_model_name_or_path {pipeline_path} | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
pipe = DiffusionPipeline.from_pretrained(pipeline_path) | |
pipe.load_lora_weights(tmpdir) | |
pipe("a prompt", num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
# checkpoint-2 should have been deleted | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_dreambooth_lora_sdxl_text_encoder_checkpointing_checkpoints_total_limit(self): | |
pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora_sdxl.py | |
--pretrained_model_name_or_path {pipeline_path} | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt photo | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
--train_text_encoder | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
pipe = DiffusionPipeline.from_pretrained(pipeline_path) | |
pipe.load_lora_weights(tmpdir) | |
pipe("a prompt", num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
# checkpoint-2 should have been deleted | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_custom_diffusion(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/custom_diffusion/train_custom_diffusion.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt <new1> | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 1.0e-05 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--modifier_token <new1> | |
--no_safe_serialization | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_custom_diffusion_weights.bin"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "<new1>.bin"))) | |
def test_text_to_image(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
def test_text_to_image_checkpointing(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 5, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 5 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
# check can run an intermediate checkpoint | |
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
# Run training script for 7 total steps resuming from checkpoint 4 | |
resume_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-4 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check can run new fully trained pipeline | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{ | |
# no checkpoint-2 -> check old checkpoints do not exist | |
# check new checkpoints exist | |
"checkpoint-4", | |
"checkpoint-6", | |
}, | |
) | |
def test_text_to_image_checkpointing_use_ema(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 5, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 5 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--use_ema | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
# check can run an intermediate checkpoint | |
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
# Run training script for 7 total steps resuming from checkpoint 4 | |
resume_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-4 | |
--use_ema | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check can run new fully trained pipeline | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{ | |
# no checkpoint-2 -> check old checkpoints do not exist | |
# check new checkpoints exist | |
"checkpoint-4", | |
"checkpoint-6", | |
}, | |
) | |
def test_text_to_image_checkpointing_checkpoints_total_limit(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 7, checkpointing_steps == 2, checkpoints_total_limit == 2 | |
# Should create checkpoints at steps 2, 4, 6 | |
# with checkpoint at step 2 deleted | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
# checkpoint-2 should have been deleted | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 9, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4, 6, 8 | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 9 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, | |
) | |
# resume and we should try to checkpoint at 10, where we'll have to remove | |
# checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint | |
resume_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 11 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-8 | |
--checkpoints_total_limit=3 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-6", "checkpoint-8", "checkpoint-10"}, | |
) | |
def test_text_to_image_sdxl(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/text_to_image/train_text_to_image_sdxl.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
def test_text_to_image_lora_checkpointing_checkpoints_total_limit(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 7, checkpointing_steps == 2, checkpoints_total_limit == 2 | |
# Should create checkpoints at steps 2, 4, 6 | |
# with checkpoint at step 2 deleted | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image_lora.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
--seed=0 | |
--num_validation_images=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None | |
) | |
pipe.load_lora_weights(tmpdir) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
# checkpoint-2 should have been deleted | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_text_to_image_lora_sdxl_checkpointing_checkpoints_total_limit(self): | |
prompt = "a prompt" | |
pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 7, checkpointing_steps == 2, checkpoints_total_limit == 2 | |
# Should create checkpoints at steps 2, 4, 6 | |
# with checkpoint at step 2 deleted | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image_lora_sdxl.py | |
--pretrained_model_name_or_path {pipeline_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(pipeline_path) | |
pipe.load_lora_weights(tmpdir) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
# checkpoint-2 should have been deleted | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_text_to_image_lora_sdxl_text_encoder_checkpointing_checkpoints_total_limit(self): | |
prompt = "a prompt" | |
pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 7, checkpointing_steps == 2, checkpoints_total_limit == 2 | |
# Should create checkpoints at steps 2, 4, 6 | |
# with checkpoint at step 2 deleted | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image_lora_sdxl.py | |
--pretrained_model_name_or_path {pipeline_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--train_text_encoder | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(pipeline_path) | |
pipe.load_lora_weights(tmpdir) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
# checkpoint-2 should have been deleted | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_text_to_image_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 9, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4, 6, 8 | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image_lora.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 9 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--seed=0 | |
--num_validation_images=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None | |
) | |
pipe.load_lora_weights(tmpdir) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, | |
) | |
# resume and we should try to checkpoint at 10, where we'll have to remove | |
# checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint | |
resume_run_args = f""" | |
examples/text_to_image/train_text_to_image_lora.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 11 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-8 | |
--checkpoints_total_limit=3 | |
--seed=0 | |
--num_validation_images=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
pipe = DiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None | |
) | |
pipe.load_lora_weights(tmpdir) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-6", "checkpoint-8", "checkpoint-10"}, | |
) | |
def test_unconditional_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
initial_run_args = f""" | |
examples/unconditional_image_generation/train_unconditional.py | |
--dataset_name hf-internal-testing/dummy_image_class_data | |
--model_config_name_or_path diffusers/ddpm_dummy | |
--resolution 64 | |
--output_dir {tmpdir} | |
--train_batch_size 1 | |
--num_epochs 1 | |
--gradient_accumulation_steps 1 | |
--ddpm_num_inference_steps 2 | |
--learning_rate 1e-3 | |
--lr_warmup_steps 5 | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
# checkpoint-2 should have been deleted | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_unconditional_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
initial_run_args = f""" | |
examples/unconditional_image_generation/train_unconditional.py | |
--dataset_name hf-internal-testing/dummy_image_class_data | |
--model_config_name_or_path diffusers/ddpm_dummy | |
--resolution 64 | |
--output_dir {tmpdir} | |
--train_batch_size 1 | |
--num_epochs 1 | |
--gradient_accumulation_steps 1 | |
--ddpm_num_inference_steps 2 | |
--learning_rate 1e-3 | |
--lr_warmup_steps 5 | |
--checkpointing_steps=1 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-1", "checkpoint-2", "checkpoint-3", "checkpoint-4", "checkpoint-5", "checkpoint-6"}, | |
) | |
resume_run_args = f""" | |
examples/unconditional_image_generation/train_unconditional.py | |
--dataset_name hf-internal-testing/dummy_image_class_data | |
--model_config_name_or_path diffusers/ddpm_dummy | |
--resolution 64 | |
--output_dir {tmpdir} | |
--train_batch_size 1 | |
--num_epochs 2 | |
--gradient_accumulation_steps 1 | |
--ddpm_num_inference_steps 2 | |
--learning_rate 1e-3 | |
--lr_warmup_steps 5 | |
--resume_from_checkpoint=checkpoint-6 | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=3 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-8", "checkpoint-10", "checkpoint-12"}, | |
) | |
def test_textual_inversion_checkpointing(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/textual_inversion/textual_inversion.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--train_data_dir docs/source/en/imgs | |
--learnable_property object | |
--placeholder_token <cat-toy> | |
--initializer_token a | |
--validation_prompt <cat-toy> | |
--validation_steps 1 | |
--save_steps 1 | |
--num_vectors 2 | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 3 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=1 | |
--checkpoints_total_limit=2 | |
""".split() | |
run_command(self._launch_args + test_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-3"}, | |
) | |
def test_textual_inversion_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/textual_inversion/textual_inversion.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--train_data_dir docs/source/en/imgs | |
--learnable_property object | |
--placeholder_token <cat-toy> | |
--initializer_token a | |
--validation_prompt <cat-toy> | |
--validation_steps 1 | |
--save_steps 1 | |
--num_vectors 2 | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 3 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=1 | |
""".split() | |
run_command(self._launch_args + test_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-1", "checkpoint-2", "checkpoint-3"}, | |
) | |
resume_run_args = f""" | |
examples/textual_inversion/textual_inversion.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--train_data_dir docs/source/en/imgs | |
--learnable_property object | |
--placeholder_token <cat-toy> | |
--initializer_token a | |
--validation_prompt <cat-toy> | |
--validation_steps 1 | |
--save_steps 1 | |
--num_vectors 2 | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 4 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=1 | |
--resume_from_checkpoint=checkpoint-3 | |
--checkpoints_total_limit=2 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-3", "checkpoint-4"}, | |
) | |
def test_instruct_pix2pix_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/instruct_pix2pix/train_instruct_pix2pix.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--dataset_name=hf-internal-testing/instructpix2pix-10-samples | |
--resolution=64 | |
--random_flip | |
--train_batch_size=1 | |
--max_train_steps=7 | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
--output_dir {tmpdir} | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_instruct_pix2pix_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/instruct_pix2pix/train_instruct_pix2pix.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--dataset_name=hf-internal-testing/instructpix2pix-10-samples | |
--resolution=64 | |
--random_flip | |
--train_batch_size=1 | |
--max_train_steps=9 | |
--checkpointing_steps=2 | |
--output_dir {tmpdir} | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + test_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, | |
) | |
resume_run_args = f""" | |
examples/instruct_pix2pix/train_instruct_pix2pix.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--dataset_name=hf-internal-testing/instructpix2pix-10-samples | |
--resolution=64 | |
--random_flip | |
--train_batch_size=1 | |
--max_train_steps=11 | |
--checkpointing_steps=2 | |
--output_dir {tmpdir} | |
--seed=0 | |
--resume_from_checkpoint=checkpoint-8 | |
--checkpoints_total_limit=3 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-6", "checkpoint-8", "checkpoint-10"}, | |
) | |
def test_dreambooth_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=prompt | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--max_train_steps=6 | |
--checkpoints_total_limit=2 | |
--checkpointing_steps=2 | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_dreambooth_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=prompt | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--max_train_steps=9 | |
--checkpointing_steps=2 | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, | |
) | |
resume_run_args = f""" | |
examples/dreambooth/train_dreambooth.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=prompt | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--max_train_steps=11 | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-8 | |
--checkpoints_total_limit=3 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-6", "checkpoint-8", "checkpoint-10"}, | |
) | |
def test_dreambooth_lora_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=prompt | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--max_train_steps=6 | |
--checkpoints_total_limit=2 | |
--checkpointing_steps=2 | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_dreambooth_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/dreambooth/train_dreambooth_lora.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=prompt | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--max_train_steps=9 | |
--checkpointing_steps=2 | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, | |
) | |
resume_run_args = f""" | |
examples/dreambooth/train_dreambooth_lora.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=prompt | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--max_train_steps=11 | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-8 | |
--checkpoints_total_limit=3 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-6", "checkpoint-8", "checkpoint-10"}, | |
) | |
def test_controlnet_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/controlnet/train_controlnet.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--dataset_name=hf-internal-testing/fill10 | |
--output_dir={tmpdir} | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--max_train_steps=6 | |
--checkpoints_total_limit=2 | |
--checkpointing_steps=2 | |
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_controlnet_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/controlnet/train_controlnet.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--dataset_name=hf-internal-testing/fill10 | |
--output_dir={tmpdir} | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet | |
--max_train_steps=9 | |
--checkpointing_steps=2 | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, | |
) | |
resume_run_args = f""" | |
examples/controlnet/train_controlnet.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--dataset_name=hf-internal-testing/fill10 | |
--output_dir={tmpdir} | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet | |
--max_train_steps=11 | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-8 | |
--checkpoints_total_limit=3 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-8", "checkpoint-10", "checkpoint-12"}, | |
) | |
def test_controlnet_sdxl(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/controlnet/train_controlnet_sdxl.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name=hf-internal-testing/fill10 | |
--output_dir={tmpdir} | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet-sdxl | |
--max_train_steps=9 | |
--checkpointing_steps=2 | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors"))) | |
def test_t2i_adapter_sdxl(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/t2i_adapter/train_t2i_adapter_sdxl.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--adapter_model_name_or_path=hf-internal-testing/tiny-adapter | |
--dataset_name=hf-internal-testing/fill10 | |
--output_dir={tmpdir} | |
--resolution=64 | |
--train_batch_size=1 | |
--gradient_accumulation_steps=1 | |
--max_train_steps=9 | |
--checkpointing_steps=2 | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors"))) | |
def test_custom_diffusion_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/custom_diffusion/train_custom_diffusion.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=<new1> | |
--resolution=64 | |
--train_batch_size=1 | |
--modifier_token=<new1> | |
--dataloader_num_workers=0 | |
--max_train_steps=6 | |
--checkpoints_total_limit=2 | |
--checkpointing_steps=2 | |
--no_safe_serialization | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_custom_diffusion_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/custom_diffusion/train_custom_diffusion.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=<new1> | |
--resolution=64 | |
--train_batch_size=1 | |
--modifier_token=<new1> | |
--dataloader_num_workers=0 | |
--max_train_steps=9 | |
--checkpointing_steps=2 | |
--no_safe_serialization | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, | |
) | |
resume_run_args = f""" | |
examples/custom_diffusion/train_custom_diffusion.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=<new1> | |
--resolution=64 | |
--train_batch_size=1 | |
--modifier_token=<new1> | |
--dataloader_num_workers=0 | |
--max_train_steps=11 | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-8 | |
--checkpoints_total_limit=3 | |
--no_safe_serialization | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-6", "checkpoint-8", "checkpoint-10"}, | |
) | |
def test_text_to_image_lora_sdxl(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/text_to_image/train_text_to_image_lora_sdxl.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
# make sure the state_dict has the correct naming in the parameters. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
self.assertTrue(is_lora) | |
def test_text_to_image_lora_sdxl_with_text_encoder(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/text_to_image/train_text_to_image_lora_sdxl.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--train_text_encoder | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
# make sure the state_dict has the correct naming in the parameters. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
self.assertTrue(is_lora) | |
# when not training the text encoder, all the parameters in the state dict should start | |
# with `"unet"` or `"text_encoder"` or `"text_encoder_2"` in their names. | |
keys = lora_state_dict.keys() | |
starts_with_unet = all( | |
k.startswith("unet") or k.startswith("text_encoder") or k.startswith("text_encoder_2") for k in keys | |
) | |
self.assertTrue(starts_with_unet) | |