Spaces:
No application file
No application file
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import gc | |
import os | |
import tempfile | |
import unittest | |
import torch | |
from parameterized import parameterized | |
from pytest import mark | |
from diffusers import UNet2DConditionModel | |
from diffusers.models.attention_processor import CustomDiffusionAttnProcessor, IPAdapterAttnProcessor | |
from diffusers.models.embeddings import ImageProjection | |
from diffusers.utils import logging | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_hf_numpy, | |
require_torch_gpu, | |
slow, | |
torch_all_close, | |
torch_device, | |
) | |
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
logger = logging.get_logger(__name__) | |
enable_full_determinism() | |
def create_ip_adapter_state_dict(model): | |
# "ip_adapter" (cross-attention weights) | |
ip_cross_attn_state_dict = {} | |
key_id = 1 | |
for name in model.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = model.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(model.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = model.config.block_out_channels[block_id] | |
if cross_attention_dim is not None: | |
sd = IPAdapterAttnProcessor( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 | |
).state_dict() | |
ip_cross_attn_state_dict.update( | |
{ | |
f"{key_id}.to_k_ip.weight": sd["to_k_ip.weight"], | |
f"{key_id}.to_v_ip.weight": sd["to_v_ip.weight"], | |
} | |
) | |
key_id += 2 | |
# "image_proj" (ImageProjection layer weights) | |
cross_attention_dim = model.config["cross_attention_dim"] | |
image_projection = ImageProjection( | |
cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, num_image_text_embeds=4 | |
) | |
ip_image_projection_state_dict = {} | |
sd = image_projection.state_dict() | |
ip_image_projection_state_dict.update( | |
{ | |
"proj.weight": sd["image_embeds.weight"], | |
"proj.bias": sd["image_embeds.bias"], | |
"norm.weight": sd["norm.weight"], | |
"norm.bias": sd["norm.bias"], | |
} | |
) | |
del sd | |
ip_state_dict = {} | |
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) | |
return ip_state_dict | |
def create_custom_diffusion_layers(model, mock_weights: bool = True): | |
train_kv = True | |
train_q_out = True | |
custom_diffusion_attn_procs = {} | |
st = model.state_dict() | |
for name, _ in model.attn_processors.items(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = model.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(model.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = model.config.block_out_channels[block_id] | |
layer_name = name.split(".processor")[0] | |
weights = { | |
"to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], | |
"to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], | |
} | |
if train_q_out: | |
weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] | |
weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] | |
weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] | |
if cross_attention_dim is not None: | |
custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( | |
train_kv=train_kv, | |
train_q_out=train_q_out, | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
).to(model.device) | |
custom_diffusion_attn_procs[name].load_state_dict(weights) | |
if mock_weights: | |
# add 1 to weights to mock trained weights | |
with torch.no_grad(): | |
custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1 | |
custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1 | |
else: | |
custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( | |
train_kv=False, | |
train_q_out=False, | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
) | |
del st | |
return custom_diffusion_attn_procs | |
class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = UNet2DConditionModel | |
main_input_name = "sample" | |
def dummy_input(self): | |
batch_size = 4 | |
num_channels = 4 | |
sizes = (32, 32) | |
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
time_step = torch.tensor([10]).to(torch_device) | |
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) | |
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} | |
def input_shape(self): | |
return (4, 32, 32) | |
def output_shape(self): | |
return (4, 32, 32) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"block_out_channels": (32, 64), | |
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"), | |
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"), | |
"cross_attention_dim": 32, | |
"attention_head_dim": 8, | |
"out_channels": 4, | |
"in_channels": 4, | |
"layers_per_block": 2, | |
"sample_size": 32, | |
} | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_xformers_enable_works(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.enable_xformers_memory_efficient_attention() | |
assert ( | |
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
== "XFormersAttnProcessor" | |
), "xformers is not enabled" | |
def test_gradient_checkpointing(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
assert not model.is_gradient_checkpointing and model.training | |
out = model(**inputs_dict).sample | |
# run the backwards pass on the model. For backwards pass, for simplicity purpose, | |
# we won't calculate the loss and rather backprop on out.sum() | |
model.zero_grad() | |
labels = torch.randn_like(out) | |
loss = (out - labels).mean() | |
loss.backward() | |
# re-instantiate the model now enabling gradient checkpointing | |
model_2 = self.model_class(**init_dict) | |
# clone model | |
model_2.load_state_dict(model.state_dict()) | |
model_2.to(torch_device) | |
model_2.enable_gradient_checkpointing() | |
assert model_2.is_gradient_checkpointing and model_2.training | |
out_2 = model_2(**inputs_dict).sample | |
# run the backwards pass on the model. For backwards pass, for simplicity purpose, | |
# we won't calculate the loss and rather backprop on out.sum() | |
model_2.zero_grad() | |
loss_2 = (out_2 - labels).mean() | |
loss_2.backward() | |
# compare the output and parameters gradients | |
self.assertTrue((loss - loss_2).abs() < 1e-5) | |
named_params = dict(model.named_parameters()) | |
named_params_2 = dict(model_2.named_parameters()) | |
for name, param in named_params.items(): | |
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) | |
def test_model_with_attention_head_dim_tuple(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_model_with_use_linear_projection(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["use_linear_projection"] = True | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_model_with_cross_attention_dim_tuple(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["cross_attention_dim"] = (32, 32) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_model_with_simple_projection(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
batch_size, _, _, sample_size = inputs_dict["sample"].shape | |
init_dict["class_embed_type"] = "simple_projection" | |
init_dict["projection_class_embeddings_input_dim"] = sample_size | |
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_model_with_class_embeddings_concat(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
batch_size, _, _, sample_size = inputs_dict["sample"].shape | |
init_dict["class_embed_type"] = "simple_projection" | |
init_dict["projection_class_embeddings_input_dim"] = sample_size | |
init_dict["class_embeddings_concat"] = True | |
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_model_attention_slicing(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
model.set_attention_slice("auto") | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
assert output is not None | |
model.set_attention_slice("max") | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
assert output is not None | |
model.set_attention_slice(2) | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
assert output is not None | |
def test_model_sliceable_head_dim(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
model = self.model_class(**init_dict) | |
def check_sliceable_dim_attr(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
assert isinstance(module.sliceable_head_dim, int) | |
for child in module.children(): | |
check_sliceable_dim_attr(child) | |
# retrieve number of attention layers | |
for module in model.children(): | |
check_sliceable_dim_attr(module) | |
def test_gradient_checkpointing_is_applied(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
model_class_copy = copy.copy(self.model_class) | |
modules_with_gc_enabled = {} | |
# now monkey patch the following function: | |
# def _set_gradient_checkpointing(self, module, value=False): | |
# if hasattr(module, "gradient_checkpointing"): | |
# module.gradient_checkpointing = value | |
def _set_gradient_checkpointing_new(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
modules_with_gc_enabled[module.__class__.__name__] = True | |
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new | |
model = model_class_copy(**init_dict) | |
model.enable_gradient_checkpointing() | |
EXPECTED_SET = { | |
"CrossAttnUpBlock2D", | |
"CrossAttnDownBlock2D", | |
"UNetMidBlock2DCrossAttn", | |
"UpBlock2D", | |
"Transformer2DModel", | |
"DownBlock2D", | |
} | |
assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET | |
assert all(modules_with_gc_enabled.values()), "All modules should be enabled" | |
def test_special_attn_proc(self): | |
class AttnEasyProc(torch.nn.Module): | |
def __init__(self, num): | |
super().__init__() | |
self.weight = torch.nn.Parameter(torch.tensor(num)) | |
self.is_run = False | |
self.number = 0 | |
self.counter = 0 | |
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
query = attn.to_q(hidden_states) | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
hidden_states += self.weight | |
self.is_run = True | |
self.counter += 1 | |
self.number = number | |
return hidden_states | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
processor = AttnEasyProc(5.0) | |
model.set_attn_processor(processor) | |
model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample | |
assert processor.counter == 12 | |
assert processor.is_run | |
assert processor.number == 123 | |
def test_model_xattn_mask(self, mask_dtype): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)}) | |
model.to(torch_device) | |
model.eval() | |
cond = inputs_dict["encoder_hidden_states"] | |
with torch.no_grad(): | |
full_cond_out = model(**inputs_dict).sample | |
assert full_cond_out is not None | |
keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype) | |
full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample | |
assert full_cond_keepallmask_out.allclose( | |
full_cond_out, rtol=1e-05, atol=1e-05 | |
), "a 'keep all' mask should give the same result as no mask" | |
trunc_cond = cond[:, :-1, :] | |
trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample | |
assert not trunc_cond_out.allclose( | |
full_cond_out, rtol=1e-05, atol=1e-05 | |
), "discarding the last token from our cond should change the result" | |
batch, tokens, _ = cond.shape | |
mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype) | |
masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample | |
assert masked_cond_out.allclose( | |
trunc_cond_out, rtol=1e-05, atol=1e-05 | |
), "masking the last token from our cond should be equivalent to truncating that token out of the condition" | |
# see diffusers.models.attention_processor::Attention#prepare_attention_mask | |
# note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks. | |
# since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric. | |
# maybe it's fine that this only works for the unclip use-case. | |
def test_model_xattn_padding(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)}) | |
model.to(torch_device) | |
model.eval() | |
cond = inputs_dict["encoder_hidden_states"] | |
with torch.no_grad(): | |
full_cond_out = model(**inputs_dict).sample | |
assert full_cond_out is not None | |
batch, tokens, _ = cond.shape | |
keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool) | |
keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample | |
assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result" | |
trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool) | |
trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample | |
assert trunc_mask_out.allclose( | |
keeplast_out | |
), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask." | |
def test_custom_diffusion_processors(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
sample1 = model(**inputs_dict).sample | |
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) | |
# make sure we can set a list of attention processors | |
model.set_attn_processor(custom_diffusion_attn_procs) | |
model.to(torch_device) | |
# test that attn processors can be set to itself | |
model.set_attn_processor(model.attn_processors) | |
with torch.no_grad(): | |
sample2 = model(**inputs_dict).sample | |
assert (sample1 - sample2).abs().max() < 3e-3 | |
def test_custom_diffusion_save_load(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
old_sample = model(**inputs_dict).sample | |
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) | |
model.set_attn_processor(custom_diffusion_attn_procs) | |
with torch.no_grad(): | |
sample = model(**inputs_dict).sample | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_attn_procs(tmpdirname, safe_serialization=False) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin"))) | |
torch.manual_seed(0) | |
new_model = self.model_class(**init_dict) | |
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin") | |
new_model.to(torch_device) | |
with torch.no_grad(): | |
new_sample = new_model(**inputs_dict).sample | |
assert (sample - new_sample).abs().max() < 1e-4 | |
# custom diffusion and no custom diffusion should be the same | |
assert (sample - old_sample).abs().max() < 3e-3 | |
def test_custom_diffusion_xformers_on_off(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) | |
model.set_attn_processor(custom_diffusion_attn_procs) | |
# default | |
with torch.no_grad(): | |
sample = model(**inputs_dict).sample | |
model.enable_xformers_memory_efficient_attention() | |
on_sample = model(**inputs_dict).sample | |
model.disable_xformers_memory_efficient_attention() | |
off_sample = model(**inputs_dict).sample | |
assert (sample - on_sample).abs().max() < 1e-4 | |
assert (sample - off_sample).abs().max() < 1e-4 | |
def test_pickle(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
sample = model(**inputs_dict).sample | |
sample_copy = copy.copy(sample) | |
assert (sample - sample_copy).abs().max() < 1e-4 | |
def test_asymmetrical_unet(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
# Add asymmetry to configs | |
init_dict["transformer_layers_per_block"] = [[3, 2], 1] | |
init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1] | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
output = model(**inputs_dict).sample | |
expected_shape = inputs_dict["sample"].shape | |
# Check if input and output shapes are the same | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_ip_adapter(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["attention_head_dim"] = (8, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
# forward pass without ip-adapter | |
with torch.no_grad(): | |
sample1 = model(**inputs_dict).sample | |
# update inputs_dict for ip-adapter | |
batch_size = inputs_dict["encoder_hidden_states"].shape[0] | |
image_embeds = floats_tensor((batch_size, 1, model.cross_attention_dim)).to(torch_device) | |
inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds} | |
# make ip_adapter_1 and ip_adapter_2 | |
ip_adapter_1 = create_ip_adapter_state_dict(model) | |
image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()} | |
cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()} | |
ip_adapter_2 = {} | |
ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2}) | |
# forward pass ip_adapter_1 | |
model._load_ip_adapter_weights(ip_adapter_1) | |
assert model.config.encoder_hid_dim_type == "ip_image_proj" | |
assert model.encoder_hid_proj is not None | |
assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in ( | |
"IPAdapterAttnProcessor", | |
"IPAdapterAttnProcessor2_0", | |
) | |
with torch.no_grad(): | |
sample2 = model(**inputs_dict).sample | |
# forward pass with ip_adapter_2 | |
model._load_ip_adapter_weights(ip_adapter_2) | |
with torch.no_grad(): | |
sample3 = model(**inputs_dict).sample | |
# forward pass with ip_adapter_1 again | |
model._load_ip_adapter_weights(ip_adapter_1) | |
with torch.no_grad(): | |
sample4 = model(**inputs_dict).sample | |
assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4) | |
assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4) | |
assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4) | |
class UNet2DConditionModelIntegrationTests(unittest.TestCase): | |
def get_file_format(self, seed, shape): | |
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): | |
dtype = torch.float16 if fp16 else torch.float32 | |
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
return image | |
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): | |
revision = "fp16" if fp16 else None | |
torch_dtype = torch.float16 if fp16 else torch.float32 | |
model = UNet2DConditionModel.from_pretrained( | |
model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision | |
) | |
model.to(torch_device).eval() | |
return model | |
def test_set_attention_slice_auto(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
unet = self.get_unet_model() | |
unet.set_attention_slice("auto") | |
latents = self.get_latents(33) | |
encoder_hidden_states = self.get_encoder_hidden_states(33) | |
timestep = 1 | |
with torch.no_grad(): | |
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 5 * 10**9 | |
def test_set_attention_slice_max(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
unet = self.get_unet_model() | |
unet.set_attention_slice("max") | |
latents = self.get_latents(33) | |
encoder_hidden_states = self.get_encoder_hidden_states(33) | |
timestep = 1 | |
with torch.no_grad(): | |
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 5 * 10**9 | |
def test_set_attention_slice_int(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
unet = self.get_unet_model() | |
unet.set_attention_slice(2) | |
latents = self.get_latents(33) | |
encoder_hidden_states = self.get_encoder_hidden_states(33) | |
timestep = 1 | |
with torch.no_grad(): | |
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 5 * 10**9 | |
def test_set_attention_slice_list(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
# there are 32 sliceable layers | |
slice_list = 16 * [2, 3] | |
unet = self.get_unet_model() | |
unet.set_attention_slice(slice_list) | |
latents = self.get_latents(33) | |
encoder_hidden_states = self.get_encoder_hidden_states(33) | |
timestep = 1 | |
with torch.no_grad(): | |
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 5 * 10**9 | |
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): | |
dtype = torch.float16 if fp16 else torch.float32 | |
hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
return hidden_states | |
def test_compvis_sd_v1_4(self, seed, timestep, expected_slice): | |
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4") | |
latents = self.get_latents(seed) | |
encoder_hidden_states = self.get_encoder_hidden_states(seed) | |
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
with torch.no_grad(): | |
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
assert sample.shape == latents.shape | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) | |
def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice): | |
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) | |
latents = self.get_latents(seed, fp16=True) | |
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) | |
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
with torch.no_grad(): | |
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
assert sample.shape == latents.shape | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): | |
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5") | |
latents = self.get_latents(seed) | |
encoder_hidden_states = self.get_encoder_hidden_states(seed) | |
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
with torch.no_grad(): | |
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
assert sample.shape == latents.shape | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) | |
def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): | |
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True) | |
latents = self.get_latents(seed, fp16=True) | |
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) | |
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
with torch.no_grad(): | |
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
assert sample.shape == latents.shape | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): | |
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting") | |
latents = self.get_latents(seed, shape=(4, 9, 64, 64)) | |
encoder_hidden_states = self.get_encoder_hidden_states(seed) | |
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
with torch.no_grad(): | |
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
assert sample.shape == (4, 4, 64, 64) | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) | |
def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): | |
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True) | |
latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) | |
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) | |
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
with torch.no_grad(): | |
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
assert sample.shape == (4, 4, 64, 64) | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice): | |
model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True) | |
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True) | |
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True) | |
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
with torch.no_grad(): | |
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
assert sample.shape == latents.shape | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |