Spaces:
No application file
No application file
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ | |
import gc | |
import random | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from PIL import Image | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
ControlNetModel, | |
DDIMScheduler, | |
StableDiffusionControlNetImg2ImgPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel | |
from diffusers.utils import load_image | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_numpy, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from ..pipeline_params import ( | |
IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, | |
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, | |
) | |
from ..test_pipelines_common import ( | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineLatentTesterMixin, | |
PipelineTesterMixin, | |
) | |
enable_full_determinism() | |
class ControlNetImg2ImgPipelineFastTests( | |
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionControlNetImg2ImgPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"}) | |
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(4, 8), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
norm_num_groups=1, | |
) | |
torch.manual_seed(0) | |
controlnet = ControlNetModel( | |
block_out_channels=(4, 8), | |
layers_per_block=2, | |
in_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
cross_attention_dim=32, | |
conditioning_embedding_out_channels=(16, 32), | |
norm_num_groups=1, | |
) | |
torch.manual_seed(0) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[4, 8], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
norm_num_groups=2, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"controlnet": controlnet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
controlnet_embedder_scale_factor = 2 | |
control_image = randn_tensor( | |
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
generator=generator, | |
device=torch.device(device), | |
) | |
image = floats_tensor(control_image.shape, rng=random.Random(seed)).to(device) | |
image = image.cpu().permute(0, 2, 3, 1)[0] | |
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "numpy", | |
"image": image, | |
"control_image": control_image, | |
} | |
return inputs | |
def test_attention_slicing_forward_pass(self): | |
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
class StableDiffusionMultiControlNetPipelineFastTests( | |
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionControlNetImg2ImgPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(4, 8), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
norm_num_groups=1, | |
) | |
torch.manual_seed(0) | |
def init_weights(m): | |
if isinstance(m, torch.nn.Conv2d): | |
torch.nn.init.normal(m.weight) | |
m.bias.data.fill_(1.0) | |
controlnet1 = ControlNetModel( | |
block_out_channels=(4, 8), | |
layers_per_block=2, | |
in_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
cross_attention_dim=32, | |
conditioning_embedding_out_channels=(16, 32), | |
norm_num_groups=1, | |
) | |
controlnet1.controlnet_down_blocks.apply(init_weights) | |
torch.manual_seed(0) | |
controlnet2 = ControlNetModel( | |
block_out_channels=(4, 8), | |
layers_per_block=2, | |
in_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
cross_attention_dim=32, | |
conditioning_embedding_out_channels=(16, 32), | |
norm_num_groups=1, | |
) | |
controlnet2.controlnet_down_blocks.apply(init_weights) | |
torch.manual_seed(0) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[4, 8], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
norm_num_groups=2, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
controlnet = MultiControlNetModel([controlnet1, controlnet2]) | |
components = { | |
"unet": unet, | |
"controlnet": controlnet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
controlnet_embedder_scale_factor = 2 | |
control_image = [ | |
randn_tensor( | |
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
generator=generator, | |
device=torch.device(device), | |
), | |
randn_tensor( | |
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
generator=generator, | |
device=torch.device(device), | |
), | |
] | |
image = floats_tensor(control_image[0].shape, rng=random.Random(seed)).to(device) | |
image = image.cpu().permute(0, 2, 3, 1)[0] | |
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "numpy", | |
"image": image, | |
"control_image": control_image, | |
} | |
return inputs | |
def test_control_guidance_switch(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
scale = 10.0 | |
steps = 4 | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_1 = pipe(**inputs)[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] | |
# make sure that all outputs are different | |
assert np.sum(np.abs(output_1 - output_2)) > 1e-3 | |
assert np.sum(np.abs(output_1 - output_3)) > 1e-3 | |
assert np.sum(np.abs(output_1 - output_4)) > 1e-3 | |
def test_attention_slicing_forward_pass(self): | |
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
def test_save_pretrained_raise_not_implemented_exception(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
try: | |
# save_pretrained is not implemented for Multi-ControlNet | |
pipe.save_pretrained(tmpdir) | |
except NotImplementedError: | |
pass | |
class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_canny(self): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") | |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "evil space-punk bird" | |
control_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
).resize((512, 512)) | |
image = load_image( | |
"https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" | |
).resize((512, 512)) | |
output = pipe( | |
prompt, | |
image, | |
control_image=control_image, | |
generator=generator, | |
output_type="np", | |
num_inference_steps=50, | |
strength=0.6, | |
) | |
image = output.images[0] | |
assert image.shape == (512, 512, 3) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" | |
) | |
assert np.abs(expected_image - image).max() < 9e-2 | |
def test_load_local(self): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") | |
pipe_1 = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
) | |
controlnet = ControlNetModel.from_single_file( | |
"https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" | |
) | |
pipe_2 = StableDiffusionControlNetImg2ImgPipeline.from_single_file( | |
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors", | |
safety_checker=None, | |
controlnet=controlnet, | |
) | |
control_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
).resize((512, 512)) | |
image = load_image( | |
"https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" | |
).resize((512, 512)) | |
pipes = [pipe_1, pipe_2] | |
images = [] | |
for pipe in pipes: | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "bird" | |
output = pipe( | |
prompt, | |
image=image, | |
control_image=control_image, | |
strength=0.9, | |
generator=generator, | |
output_type="np", | |
num_inference_steps=3, | |
) | |
images.append(output.images[0]) | |
del pipe | |
gc.collect() | |
torch.cuda.empty_cache() | |
assert np.abs(images[0] - images[1]).max() < 1e-3 | |