Spaces:
No application file
No application file
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel | |
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImg2ImgPipeline | |
from diffusers.pipelines.shap_e import ShapERenderer | |
from diffusers.utils.testing_utils import ( | |
floats_tensor, | |
load_image, | |
load_numpy, | |
nightly, | |
require_torch_gpu, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
class ShapEImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = ShapEImg2ImgPipeline | |
params = ["image"] | |
batch_params = ["image"] | |
required_optional_params = [ | |
"num_images_per_prompt", | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"guidance_scale", | |
"frame_size", | |
"output_type", | |
"return_dict", | |
] | |
test_xformers_attention = False | |
def text_embedder_hidden_size(self): | |
return 16 | |
def time_input_dim(self): | |
return 16 | |
def time_embed_dim(self): | |
return self.time_input_dim * 4 | |
def renderer_dim(self): | |
return 8 | |
def dummy_image_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPVisionConfig( | |
hidden_size=self.text_embedder_hidden_size, | |
image_size=32, | |
projection_dim=self.text_embedder_hidden_size, | |
intermediate_size=24, | |
num_attention_heads=2, | |
num_channels=3, | |
num_hidden_layers=5, | |
patch_size=1, | |
) | |
model = CLIPVisionModel(config) | |
return model | |
def dummy_image_processor(self): | |
image_processor = CLIPImageProcessor( | |
crop_size=224, | |
do_center_crop=True, | |
do_normalize=True, | |
do_resize=True, | |
image_mean=[0.48145466, 0.4578275, 0.40821073], | |
image_std=[0.26862954, 0.26130258, 0.27577711], | |
resample=3, | |
size=224, | |
) | |
return image_processor | |
def dummy_prior(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"num_attention_heads": 2, | |
"attention_head_dim": 16, | |
"embedding_dim": self.time_input_dim, | |
"num_embeddings": 32, | |
"embedding_proj_dim": self.text_embedder_hidden_size, | |
"time_embed_dim": self.time_embed_dim, | |
"num_layers": 1, | |
"clip_embed_dim": self.time_input_dim * 2, | |
"additional_embeddings": 0, | |
"time_embed_act_fn": "gelu", | |
"norm_in_type": "layer", | |
"embedding_proj_norm_type": "layer", | |
"encoder_hid_proj_type": None, | |
"added_emb_type": None, | |
} | |
model = PriorTransformer(**model_kwargs) | |
return model | |
def dummy_renderer(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"param_shapes": ( | |
(self.renderer_dim, 93), | |
(self.renderer_dim, 8), | |
(self.renderer_dim, 8), | |
(self.renderer_dim, 8), | |
), | |
"d_latent": self.time_input_dim, | |
"d_hidden": self.renderer_dim, | |
"n_output": 12, | |
"background": ( | |
0.1, | |
0.1, | |
0.1, | |
), | |
} | |
model = ShapERenderer(**model_kwargs) | |
return model | |
def get_dummy_components(self): | |
prior = self.dummy_prior | |
image_encoder = self.dummy_image_encoder | |
image_processor = self.dummy_image_processor | |
shap_e_renderer = self.dummy_renderer | |
scheduler = HeunDiscreteScheduler( | |
beta_schedule="exp", | |
num_train_timesteps=1024, | |
prediction_type="sample", | |
use_karras_sigmas=True, | |
clip_sample=True, | |
clip_sample_range=1.0, | |
) | |
components = { | |
"prior": prior, | |
"image_encoder": image_encoder, | |
"image_processor": image_processor, | |
"shap_e_renderer": shap_e_renderer, | |
"scheduler": scheduler, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"image": input_image, | |
"generator": generator, | |
"num_inference_steps": 1, | |
"frame_size": 32, | |
"output_type": "latent", | |
} | |
return inputs | |
def test_shap_e(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images[0] | |
image_slice = image[-3:, -3:].cpu().numpy() | |
assert image.shape == (32, 16) | |
expected_slice = np.array( | |
[-1.0, 0.40668195, 0.57322013, -0.9469888, 0.4283227, 0.30348337, -0.81094897, 0.74555075, 0.15342723] | |
) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_inference_batch_consistent(self): | |
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches | |
self._test_inference_batch_consistent(batch_sizes=[2]) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical( | |
batch_size=2, | |
expected_max_diff=6e-3, | |
) | |
def test_num_images_per_prompt(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
batch_size = 1 | |
num_images_per_prompt = 2 | |
inputs = self.get_dummy_inputs(torch_device) | |
for key in inputs.keys(): | |
if key in self.batch_params: | |
inputs[key] = batch_size * [inputs[key]] | |
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] | |
assert images.shape[0] == batch_size * num_images_per_prompt | |
def test_float16_inference(self): | |
super().test_float16_inference(expected_max_diff=1e-1) | |
def test_save_load_local(self): | |
super().test_save_load_local(expected_max_difference=5e-3) | |
def test_sequential_cpu_offload_forward_pass(self): | |
pass | |
class ShapEImg2ImgPipelineIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_shap_e_img2img(self): | |
input_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" | |
) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/shap_e/test_shap_e_img2img_out.npy" | |
) | |
pipe = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img") | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
images = pipe( | |
input_image, | |
generator=generator, | |
guidance_scale=3.0, | |
num_inference_steps=64, | |
frame_size=64, | |
output_type="np", | |
).images[0] | |
assert images.shape == (20, 64, 64, 3) | |
assert_mean_pixel_difference(images, expected_image) | |