Spaces:
No application file
No application file
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import traceback | |
import unittest | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AsymmetricAutoencoderKL, | |
AutoencoderKL, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
LCMScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
StableDiffusionInpaintPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.models.attention_processor import AttnProcessor | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
load_numpy, | |
nightly, | |
require_python39_or_higher, | |
require_torch_2, | |
require_torch_gpu, | |
run_test_in_subprocess, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import ( | |
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, | |
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, | |
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
) | |
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin | |
enable_full_determinism() | |
# Will be run via run_test_in_subprocess | |
def _test_inpaint_compile(in_queue, out_queue, timeout): | |
error = None | |
try: | |
inputs = in_queue.get(timeout=timeout) | |
torch_device = inputs.pop("torch_device") | |
seed = inputs.pop("seed") | |
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.unet.set_default_attn_processor() | |
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.0689, 0.0699, 0.0790, 0.0536, 0.0470, 0.0488, 0.041, 0.0508, 0.04179]) | |
assert np.abs(expected_slice - image_slice).max() < 3e-3 | |
except Exception: | |
error = f"{traceback.format_exc()}" | |
results = {"error": error} | |
out_queue.put(results, timeout=timeout) | |
out_queue.join() | |
class StableDiffusionInpaintPipelineFastTests( | |
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionInpaintPipeline | |
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS | |
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
image_params = frozenset([]) | |
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess | |
image_latents_params = frozenset([]) | |
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"}) | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
time_cond_proj_dim=time_cond_proj_dim, | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=9, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True): | |
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched | |
if output_pil: | |
# Get random floats in [0, 1] as image | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image.cpu().permute(0, 2, 3, 1)[0] | |
mask_image = torch.ones_like(image) | |
# Convert image and mask_image to [0, 255] | |
image = 255 * image | |
mask_image = 255 * mask_image | |
# Convert to PIL image | |
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res)) | |
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res)) | |
else: | |
# Get random floats in [0, 1] as image with spatial size (img_res, img_res) | |
image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device) | |
# Convert image to [-1, 1] | |
init_image = 2.0 * image - 1.0 | |
mask_image = torch.ones((1, 1, img_res, img_res), device=device) | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": init_image, | |
"mask_image": mask_image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_stable_diffusion_inpaint(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionInpaintPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_inpaint_lcm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionInpaintPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_inpaint_image_tensor(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionInpaintPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = sd_pipe(**inputs) | |
out_pil = output.images | |
inputs = self.get_dummy_inputs(device) | |
inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0) | |
inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0) | |
output = sd_pipe(**inputs) | |
out_tensor = output.images | |
assert out_pil.shape == (1, 64, 64, 3) | |
assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2 | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |
def test_stable_diffusion_inpaint_strength_zero_test(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionInpaintPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
# check that the pipeline raises value error when num_inference_steps is < 1 | |
inputs["strength"] = 0.01 | |
with self.assertRaises(ValueError): | |
sd_pipe(**inputs).images | |
def test_stable_diffusion_inpaint_mask_latents(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# normal mask + normal image | |
## `image`: pil, `mask_image``: pil, `masked_image_latents``: None | |
inputs = self.get_dummy_inputs(device) | |
inputs["strength"] = 0.9 | |
out_0 = sd_pipe(**inputs).images | |
# image latents + mask latents | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device) | |
mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device) | |
masked_image = image * (mask < 0.5) | |
generator = torch.Generator(device=device).manual_seed(0) | |
image_latents = ( | |
sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor | |
) | |
torch.randn((1, 4, 32, 32), generator=generator) | |
mask_latents = ( | |
sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator) | |
* sd_pipe.vae.config.scaling_factor | |
) | |
inputs["image"] = image_latents | |
inputs["masked_image_latents"] = mask_latents | |
inputs["mask_image"] = mask | |
inputs["strength"] = 0.9 | |
generator = torch.Generator(device=device).manual_seed(0) | |
torch.randn((1, 4, 32, 32), generator=generator) | |
inputs["generator"] = generator | |
out_1 = sd_pipe(**inputs).images | |
assert np.abs(out_0 - out_1).max() < 1e-2 | |
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests): | |
pipeline_class = StableDiffusionInpaintPipeline | |
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS | |
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
image_params = frozenset([]) | |
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
time_cond_proj_dim=time_cond_proj_dim, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs_2images(self, device, seed=0, img_res=64): | |
# Get random floats in [0, 1] as image with spatial size (img_res, img_res) | |
image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device) | |
image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device) | |
# Convert images to [-1, 1] | |
init_image1 = 2.0 * image1 - 1.0 | |
init_image2 = 2.0 * image2 - 1.0 | |
# empty mask | |
mask_image = torch.zeros((1, 1, img_res, img_res), device=device) | |
if str(device).startswith("mps"): | |
generator1 = torch.manual_seed(seed) | |
generator2 = torch.manual_seed(seed) | |
else: | |
generator1 = torch.Generator(device=device).manual_seed(seed) | |
generator2 = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": ["A painting of a squirrel eating a burger"] * 2, | |
"image": [init_image1, init_image2], | |
"mask_image": [mask_image] * 2, | |
"generator": [generator1, generator2], | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_stable_diffusion_inpaint(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionInpaintPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_inpaint_lcm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionInpaintPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_inpaint_2_images(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# test to confirm if we pass two same image, we will get same output | |
inputs = self.get_dummy_inputs(device) | |
gen1 = torch.Generator(device=device).manual_seed(0) | |
gen2 = torch.Generator(device=device).manual_seed(0) | |
for name in ["prompt", "image", "mask_image"]: | |
inputs[name] = [inputs[name]] * 2 | |
inputs["generator"] = [gen1, gen2] | |
images = sd_pipe(**inputs).images | |
assert images.shape == (2, 64, 64, 3) | |
image_slice1 = images[0, -3:, -3:, -1] | |
image_slice2 = images[1, -3:, -3:, -1] | |
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4 | |
# test to confirm that if we pass two different images, we will get different output | |
inputs = self.get_dummy_inputs_2images(device) | |
images = sd_pipe(**inputs).images | |
assert images.shape == (2, 64, 64, 3) | |
image_slice1 = images[0, -3:, -3:, -1] | |
image_slice2 = images[1, -3:, -3:, -1] | |
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2 | |
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
init_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/input_bench_image.png" | |
) | |
mask_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/input_bench_mask.png" | |
) | |
inputs = { | |
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", | |
"image": init_image, | |
"mask_image": mask_image, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"guidance_scale": 7.5, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_stable_diffusion_inpaint_ddim(self): | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794]) | |
assert np.abs(expected_slice - image_slice).max() < 6e-4 | |
def test_stable_diffusion_inpaint_fp16(self): | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None | |
) | |
pipe.unet.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device, dtype=torch.float16) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-1 | |
def test_stable_diffusion_inpaint_pndm(self): | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272]) | |
assert np.abs(expected_slice - image_slice).max() < 5e-3 | |
def test_stable_diffusion_inpaint_k_lms(self): | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633]) | |
assert np.abs(expected_slice - image_slice).max() < 6e-3 | |
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing(1) | |
pipe.enable_sequential_cpu_offload() | |
inputs = self.get_inputs(torch_device, dtype=torch.float16) | |
_ = pipe(**inputs) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
# make sure that less than 2.2 GB is allocated | |
assert mem_bytes < 2.2 * 10**9 | |
def test_inpaint_compile(self): | |
seed = 0 | |
inputs = self.get_inputs(torch_device, seed=seed) | |
# Can't pickle a Generator object | |
del inputs["generator"] | |
inputs["torch_device"] = torch_device | |
inputs["seed"] = seed | |
run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs) | |
def test_stable_diffusion_inpaint_pil_input_resolution_test(self): | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
# change input image to a random size (one that would cause a tensor mismatch error) | |
inputs["image"] = inputs["image"].resize((127, 127)) | |
inputs["mask_image"] = inputs["mask_image"].resize((127, 127)) | |
inputs["height"] = 128 | |
inputs["width"] = 128 | |
image = pipe(**inputs).images | |
# verify that the returned image has the same height and width as the input height and width | |
assert image.shape == (1, inputs["height"], inputs["width"], 3) | |
def test_stable_diffusion_inpaint_strength_test(self): | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.unet.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
# change input strength | |
inputs["strength"] = 0.75 | |
image = pipe(**inputs).images | |
# verify that the returned image has the same height and width as the input height and width | |
assert image.shape == (1, 512, 512, 3) | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-3 | |
def test_stable_diffusion_simple_inpaint_ddim(self): | |
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) | |
pipe.unet.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-3 | |
def test_download_local(self): | |
filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt") | |
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16) | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.to("cuda") | |
inputs = self.get_inputs(torch_device) | |
inputs["num_inference_steps"] = 1 | |
image_out = pipe(**inputs).images[0] | |
assert image_out.shape == (512, 512, 3) | |
def test_download_ckpt_diff_format_is_same(self): | |
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt" | |
pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path) | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.unet.set_attn_processor(AttnProcessor()) | |
pipe.to("cuda") | |
inputs = self.get_inputs(torch_device) | |
inputs["num_inference_steps"] = 5 | |
image_ckpt = pipe(**inputs).images[0] | |
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.unet.set_attn_processor(AttnProcessor()) | |
pipe.to("cuda") | |
inputs = self.get_inputs(torch_device) | |
inputs["num_inference_steps"] = 5 | |
image = pipe(**inputs).images[0] | |
assert np.max(np.abs(image - image_ckpt)) < 5e-4 | |
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
init_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/input_bench_image.png" | |
) | |
mask_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/input_bench_mask.png" | |
) | |
inputs = { | |
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", | |
"image": init_image, | |
"mask_image": mask_image, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"guidance_scale": 7.5, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_stable_diffusion_inpaint_ddim(self): | |
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.vae = vae | |
pipe.unet.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-3 | |
def test_stable_diffusion_inpaint_fp16(self): | |
vae = AsymmetricAutoencoderKL.from_pretrained( | |
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None | |
) | |
pipe.unet.set_default_attn_processor() | |
pipe.vae = vae | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device, dtype=torch.float16) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179]) | |
assert np.abs(expected_slice - image_slice).max() < 5e-2 | |
def test_stable_diffusion_inpaint_pndm(self): | |
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.unet.set_default_attn_processor() | |
pipe.vae = vae | |
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288]) | |
assert np.abs(expected_slice - image_slice).max() < 5e-3 | |
def test_stable_diffusion_inpaint_k_lms(self): | |
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.unet.set_default_attn_processor() | |
pipe.vae = vae | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990]) | |
assert np.abs(expected_slice - image_slice).max() < 6e-3 | |
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
vae = AsymmetricAutoencoderKL.from_pretrained( | |
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe.vae = vae | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing(1) | |
pipe.enable_sequential_cpu_offload() | |
inputs = self.get_inputs(torch_device, dtype=torch.float16) | |
_ = pipe(**inputs) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
# make sure that less than 2.45 GB is allocated | |
assert mem_bytes < 2.45 * 10**9 | |
def test_inpaint_compile(self): | |
pass | |
def test_stable_diffusion_inpaint_pil_input_resolution_test(self): | |
vae = AsymmetricAutoencoderKL.from_pretrained( | |
"cross-attention/asymmetric-autoencoder-kl-x-1-5", | |
) | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.vae = vae | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
# change input image to a random size (one that would cause a tensor mismatch error) | |
inputs["image"] = inputs["image"].resize((127, 127)) | |
inputs["mask_image"] = inputs["mask_image"].resize((127, 127)) | |
inputs["height"] = 128 | |
inputs["width"] = 128 | |
image = pipe(**inputs).images | |
# verify that the returned image has the same height and width as the input height and width | |
assert image.shape == (1, inputs["height"], inputs["width"], 3) | |
def test_stable_diffusion_inpaint_strength_test(self): | |
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", safety_checker=None | |
) | |
pipe.unet.set_default_attn_processor() | |
pipe.vae = vae | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
# change input strength | |
inputs["strength"] = 0.75 | |
image = pipe(**inputs).images | |
# verify that the returned image has the same height and width as the input height and width | |
assert image.shape == (1, 512, 512, 3) | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661]) | |
assert np.abs(expected_slice - image_slice).max() < 3e-3 | |
def test_stable_diffusion_simple_inpaint_ddim(self): | |
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") | |
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) | |
pipe.vae = vae | |
pipe.unet.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, 253:256, 253:256, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-3 | |
def test_download_local(self): | |
vae = AsymmetricAutoencoderKL.from_pretrained( | |
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 | |
) | |
filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt") | |
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16) | |
pipe.vae = vae | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.to("cuda") | |
inputs = self.get_inputs(torch_device) | |
inputs["num_inference_steps"] = 1 | |
image_out = pipe(**inputs).images[0] | |
assert image_out.shape == (512, 512, 3) | |
def test_download_ckpt_diff_format_is_same(self): | |
pass | |
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
init_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/input_bench_image.png" | |
) | |
mask_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/input_bench_mask.png" | |
) | |
inputs = { | |
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", | |
"image": init_image, | |
"mask_image": mask_image, | |
"generator": generator, | |
"num_inference_steps": 50, | |
"guidance_scale": 7.5, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_inpaint_ddim(self): | |
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") | |
sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = sd_pipe(**inputs).images[0] | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy" | |
) | |
max_diff = np.abs(expected_image - image).max() | |
assert max_diff < 1e-3 | |
def test_inpaint_pndm(self): | |
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") | |
sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = sd_pipe(**inputs).images[0] | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy" | |
) | |
max_diff = np.abs(expected_image - image).max() | |
assert max_diff < 1e-3 | |
def test_inpaint_lms(self): | |
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") | |
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = sd_pipe(**inputs).images[0] | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy" | |
) | |
max_diff = np.abs(expected_image - image).max() | |
assert max_diff < 1e-3 | |
def test_inpaint_dpm(self): | |
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") | |
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
inputs["num_inference_steps"] = 30 | |
image = sd_pipe(**inputs).images[0] | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy" | |
) | |
max_diff = np.abs(expected_image - image).max() | |
assert max_diff < 1e-3 | |
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase): | |
def test_pil_inputs(self): | |
height, width = 32, 32 | |
im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8) | |
im = Image.fromarray(im) | |
mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5 | |
mask = Image.fromarray((mask * 255).astype(np.uint8)) | |
t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True) | |
self.assertTrue(isinstance(t_mask, torch.Tensor)) | |
self.assertTrue(isinstance(t_masked, torch.Tensor)) | |
self.assertTrue(isinstance(t_image, torch.Tensor)) | |
self.assertEqual(t_mask.ndim, 4) | |
self.assertEqual(t_masked.ndim, 4) | |
self.assertEqual(t_image.ndim, 4) | |
self.assertEqual(t_mask.shape, (1, 1, height, width)) | |
self.assertEqual(t_masked.shape, (1, 3, height, width)) | |
self.assertEqual(t_image.shape, (1, 3, height, width)) | |
self.assertTrue(t_mask.dtype == torch.float32) | |
self.assertTrue(t_masked.dtype == torch.float32) | |
self.assertTrue(t_image.dtype == torch.float32) | |
self.assertTrue(t_mask.min() >= 0.0) | |
self.assertTrue(t_mask.max() <= 1.0) | |
self.assertTrue(t_masked.min() >= -1.0) | |
self.assertTrue(t_masked.min() <= 1.0) | |
self.assertTrue(t_image.min() >= -1.0) | |
self.assertTrue(t_image.min() >= -1.0) | |
self.assertTrue(t_mask.sum() > 0.0) | |
def test_np_inputs(self): | |
height, width = 32, 32 | |
im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8) | |
im_pil = Image.fromarray(im_np) | |
mask_np = ( | |
np.random.randint( | |
0, | |
255, | |
( | |
height, | |
width, | |
), | |
dtype=np.uint8, | |
) | |
> 127.5 | |
) | |
mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8)) | |
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( | |
im_np, mask_np, height, width, return_image=True | |
) | |
t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image( | |
im_pil, mask_pil, height, width, return_image=True | |
) | |
self.assertTrue((t_mask_np == t_mask_pil).all()) | |
self.assertTrue((t_masked_np == t_masked_pil).all()) | |
self.assertTrue((t_image_np == t_image_pil).all()) | |
def test_torch_3D_2D_inputs(self): | |
height, width = 32, 32 | |
im_tensor = torch.randint( | |
0, | |
255, | |
( | |
3, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
mask_tensor = ( | |
torch.randint( | |
0, | |
255, | |
( | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
> 127.5 | |
) | |
im_np = im_tensor.numpy().transpose(1, 2, 0) | |
mask_np = mask_tensor.numpy() | |
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( | |
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True | |
) | |
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( | |
im_np, mask_np, height, width, return_image=True | |
) | |
self.assertTrue((t_mask_tensor == t_mask_np).all()) | |
self.assertTrue((t_masked_tensor == t_masked_np).all()) | |
self.assertTrue((t_image_tensor == t_image_np).all()) | |
def test_torch_3D_3D_inputs(self): | |
height, width = 32, 32 | |
im_tensor = torch.randint( | |
0, | |
255, | |
( | |
3, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
mask_tensor = ( | |
torch.randint( | |
0, | |
255, | |
( | |
1, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
> 127.5 | |
) | |
im_np = im_tensor.numpy().transpose(1, 2, 0) | |
mask_np = mask_tensor.numpy()[0] | |
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( | |
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True | |
) | |
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( | |
im_np, mask_np, height, width, return_image=True | |
) | |
self.assertTrue((t_mask_tensor == t_mask_np).all()) | |
self.assertTrue((t_masked_tensor == t_masked_np).all()) | |
self.assertTrue((t_image_tensor == t_image_np).all()) | |
def test_torch_4D_2D_inputs(self): | |
height, width = 32, 32 | |
im_tensor = torch.randint( | |
0, | |
255, | |
( | |
1, | |
3, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
mask_tensor = ( | |
torch.randint( | |
0, | |
255, | |
( | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
> 127.5 | |
) | |
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) | |
mask_np = mask_tensor.numpy() | |
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( | |
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True | |
) | |
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( | |
im_np, mask_np, height, width, return_image=True | |
) | |
self.assertTrue((t_mask_tensor == t_mask_np).all()) | |
self.assertTrue((t_masked_tensor == t_masked_np).all()) | |
self.assertTrue((t_image_tensor == t_image_np).all()) | |
def test_torch_4D_3D_inputs(self): | |
height, width = 32, 32 | |
im_tensor = torch.randint( | |
0, | |
255, | |
( | |
1, | |
3, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
mask_tensor = ( | |
torch.randint( | |
0, | |
255, | |
( | |
1, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
> 127.5 | |
) | |
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) | |
mask_np = mask_tensor.numpy()[0] | |
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( | |
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True | |
) | |
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( | |
im_np, mask_np, height, width, return_image=True | |
) | |
self.assertTrue((t_mask_tensor == t_mask_np).all()) | |
self.assertTrue((t_masked_tensor == t_masked_np).all()) | |
self.assertTrue((t_image_tensor == t_image_np).all()) | |
def test_torch_4D_4D_inputs(self): | |
height, width = 32, 32 | |
im_tensor = torch.randint( | |
0, | |
255, | |
( | |
1, | |
3, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
mask_tensor = ( | |
torch.randint( | |
0, | |
255, | |
( | |
1, | |
1, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
> 127.5 | |
) | |
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) | |
mask_np = mask_tensor.numpy()[0][0] | |
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( | |
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True | |
) | |
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( | |
im_np, mask_np, height, width, return_image=True | |
) | |
self.assertTrue((t_mask_tensor == t_mask_np).all()) | |
self.assertTrue((t_masked_tensor == t_masked_np).all()) | |
self.assertTrue((t_image_tensor == t_image_np).all()) | |
def test_torch_batch_4D_3D(self): | |
height, width = 32, 32 | |
im_tensor = torch.randint( | |
0, | |
255, | |
( | |
2, | |
3, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
mask_tensor = ( | |
torch.randint( | |
0, | |
255, | |
( | |
2, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
> 127.5 | |
) | |
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor] | |
mask_nps = [mask.numpy() for mask in mask_tensor] | |
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( | |
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True | |
) | |
nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)] | |
t_mask_np = torch.cat([n[0] for n in nps]) | |
t_masked_np = torch.cat([n[1] for n in nps]) | |
t_image_np = torch.cat([n[2] for n in nps]) | |
self.assertTrue((t_mask_tensor == t_mask_np).all()) | |
self.assertTrue((t_masked_tensor == t_masked_np).all()) | |
self.assertTrue((t_image_tensor == t_image_np).all()) | |
def test_torch_batch_4D_4D(self): | |
height, width = 32, 32 | |
im_tensor = torch.randint( | |
0, | |
255, | |
( | |
2, | |
3, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
mask_tensor = ( | |
torch.randint( | |
0, | |
255, | |
( | |
2, | |
1, | |
height, | |
width, | |
), | |
dtype=torch.uint8, | |
) | |
> 127.5 | |
) | |
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor] | |
mask_nps = [mask.numpy()[0] for mask in mask_tensor] | |
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( | |
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True | |
) | |
nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)] | |
t_mask_np = torch.cat([n[0] for n in nps]) | |
t_masked_np = torch.cat([n[1] for n in nps]) | |
t_image_np = torch.cat([n[2] for n in nps]) | |
self.assertTrue((t_mask_tensor == t_mask_np).all()) | |
self.assertTrue((t_masked_tensor == t_masked_np).all()) | |
self.assertTrue((t_image_tensor == t_image_np).all()) | |
def test_shape_mismatch(self): | |
height, width = 32, 32 | |
# test height and width | |
with self.assertRaises(AssertionError): | |
prepare_mask_and_masked_image( | |
torch.randn( | |
3, | |
height, | |
width, | |
), | |
torch.randn(64, 64), | |
height, | |
width, | |
return_image=True, | |
) | |
# test batch dim | |
with self.assertRaises(AssertionError): | |
prepare_mask_and_masked_image( | |
torch.randn( | |
2, | |
3, | |
height, | |
width, | |
), | |
torch.randn(4, 64, 64), | |
height, | |
width, | |
return_image=True, | |
) | |
# test batch dim | |
with self.assertRaises(AssertionError): | |
prepare_mask_and_masked_image( | |
torch.randn( | |
2, | |
3, | |
height, | |
width, | |
), | |
torch.randn(4, 1, 64, 64), | |
height, | |
width, | |
return_image=True, | |
) | |
def test_type_mismatch(self): | |
height, width = 32, 32 | |
# test tensors-only | |
with self.assertRaises(TypeError): | |
prepare_mask_and_masked_image( | |
torch.rand( | |
3, | |
height, | |
width, | |
), | |
torch.rand( | |
3, | |
height, | |
width, | |
).numpy(), | |
height, | |
width, | |
return_image=True, | |
) | |
# test tensors-only | |
with self.assertRaises(TypeError): | |
prepare_mask_and_masked_image( | |
torch.rand( | |
3, | |
height, | |
width, | |
).numpy(), | |
torch.rand( | |
3, | |
height, | |
width, | |
), | |
height, | |
width, | |
return_image=True, | |
) | |
def test_channels_first(self): | |
height, width = 32, 32 | |
# test channels first for 3D tensors | |
with self.assertRaises(AssertionError): | |
prepare_mask_and_masked_image( | |
torch.rand(height, width, 3), | |
torch.rand( | |
3, | |
height, | |
width, | |
), | |
height, | |
width, | |
return_image=True, | |
) | |
def test_tensor_range(self): | |
height, width = 32, 32 | |
# test im <= 1 | |
with self.assertRaises(ValueError): | |
prepare_mask_and_masked_image( | |
torch.ones( | |
3, | |
height, | |
width, | |
) | |
* 2, | |
torch.rand( | |
height, | |
width, | |
), | |
height, | |
width, | |
return_image=True, | |
) | |
# test im >= -1 | |
with self.assertRaises(ValueError): | |
prepare_mask_and_masked_image( | |
torch.ones( | |
3, | |
height, | |
width, | |
) | |
* (-2), | |
torch.rand( | |
height, | |
width, | |
), | |
height, | |
width, | |
return_image=True, | |
) | |
# test mask <= 1 | |
with self.assertRaises(ValueError): | |
prepare_mask_and_masked_image( | |
torch.rand( | |
3, | |
height, | |
width, | |
), | |
torch.ones( | |
height, | |
width, | |
) | |
* 2, | |
height, | |
width, | |
return_image=True, | |
) | |
# test mask >= 0 | |
with self.assertRaises(ValueError): | |
prepare_mask_and_masked_image( | |
torch.rand( | |
3, | |
height, | |
width, | |
), | |
torch.ones( | |
height, | |
width, | |
) | |
* -1, | |
height, | |
width, | |
return_image=True, | |
) | |