Spaces:
No application file
No application file
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import DDPMWuerstchenScheduler, WuerstchenCombinedPipeline | |
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt, WuerstchenPrior | |
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class WuerstchenCombinedPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = WuerstchenCombinedPipeline | |
params = ["prompt"] | |
batch_params = ["prompt", "negative_prompt"] | |
required_optional_params = [ | |
"generator", | |
"height", | |
"width", | |
"latents", | |
"prior_guidance_scale", | |
"decoder_guidance_scale", | |
"negative_prompt", | |
"num_inference_steps", | |
"return_dict", | |
"prior_num_inference_steps", | |
"output_type", | |
"return_dict", | |
] | |
test_xformers_attention = True | |
def text_embedder_hidden_size(self): | |
return 32 | |
def dummy_prior(self): | |
torch.manual_seed(0) | |
model_kwargs = {"c_in": 2, "c": 8, "depth": 2, "c_cond": 32, "c_r": 8, "nhead": 2} | |
model = WuerstchenPrior(**model_kwargs) | |
return model.eval() | |
def dummy_tokenizer(self): | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
return tokenizer | |
def dummy_prior_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=self.text_embedder_hidden_size, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModel(config).eval() | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
projection_dim=self.text_embedder_hidden_size, | |
hidden_size=self.text_embedder_hidden_size, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModel(config).eval() | |
def dummy_vqgan(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"bottleneck_blocks": 1, | |
"num_vq_embeddings": 2, | |
} | |
model = PaellaVQModel(**model_kwargs) | |
return model.eval() | |
def dummy_decoder(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"c_cond": self.text_embedder_hidden_size, | |
"c_hidden": [320], | |
"nhead": [-1], | |
"blocks": [4], | |
"level_config": ["CT"], | |
"clip_embd": self.text_embedder_hidden_size, | |
"inject_effnet": [False], | |
} | |
model = WuerstchenDiffNeXt(**model_kwargs) | |
return model.eval() | |
def get_dummy_components(self): | |
prior = self.dummy_prior | |
prior_text_encoder = self.dummy_prior_text_encoder | |
scheduler = DDPMWuerstchenScheduler() | |
tokenizer = self.dummy_tokenizer | |
text_encoder = self.dummy_text_encoder | |
decoder = self.dummy_decoder | |
vqgan = self.dummy_vqgan | |
components = { | |
"tokenizer": tokenizer, | |
"text_encoder": text_encoder, | |
"decoder": decoder, | |
"vqgan": vqgan, | |
"scheduler": scheduler, | |
"prior_prior": prior, | |
"prior_text_encoder": prior_text_encoder, | |
"prior_tokenizer": tokenizer, | |
"prior_scheduler": scheduler, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "horse", | |
"generator": generator, | |
"prior_guidance_scale": 4.0, | |
"decoder_guidance_scale": 4.0, | |
"num_inference_steps": 2, | |
"prior_num_inference_steps": 2, | |
"output_type": "np", | |
"height": 128, | |
"width": 128, | |
} | |
return inputs | |
def test_wuerstchen(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images | |
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[-3:, -3:, -1] | |
assert image.shape == (1, 128, 128, 3) | |
expected_slice = np.array([0.7616304, 0.0, 1.0, 0.0, 1.0, 0.0, 0.05925313, 0.0, 0.951898]) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
assert ( | |
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
def test_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
inputs = self.get_dummy_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=1e-2) | |
def test_float16_inference(self): | |
super().test_float16_inference() | |
def test_callback_inputs(self): | |
pass | |
def test_callback_cfg(self): | |
pass | |