Spaces:
No application file
No application file
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Adapted from https://github.com/huggingface/diffusers/blob/v0.16.1/src/diffusers/models/unet_3d_blocks.py | |
from typing import Any, Dict, List, Literal, Optional, Tuple, Union | |
import logging | |
import torch | |
from torch import nn | |
from diffusers.utils import is_torch_version | |
from diffusers.models.transformer_2d import ( | |
Transformer2DModel as DiffusersTransformer2DModel, | |
) | |
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D | |
from ..data.data_util import batch_adain_conditioned_tensor | |
from .resnet import TemporalConvLayer | |
from .temporal_transformer import TransformerTemporalModel | |
from .transformer_2d import Transformer2DModel | |
from .attention_processor import ReferEmbFuseAttention | |
logger = logging.getLogger(__name__) | |
# 注: | |
# (1) 原代码的`use_linear_projection`默认值均为True,与2D-SD模型不符,load时报错。因此均改为False | |
# (2) 原代码调用`Transformer2DModel`的输入参数顺序为n_channels // attn_num_head_channels, attn_num_head_channels, | |
# 与2D-SD模型不符。因此把顺序交换 | |
# (3) 增加了temporal attention用的frame embedding输入 | |
# note: | |
# 1. The default value of `use_linear_projection` in the original code is True, which is inconsistent with the 2D-SD model and causes an error when loading. Therefore, it is changed to False. | |
# 2. The original code calls `Transformer2DModel` with the input parameter order of n_channels // attn_num_head_channels, attn_num_head_channels, which is inconsistent with the 2D-SD model. Therefore, the order is reversed. | |
# 3. Added the frame embedding input used by the temporal attention | |
def get_down_block( | |
down_block_type, | |
num_layers, | |
in_channels, | |
out_channels, | |
temb_channels, | |
femb_channels, | |
add_downsample, | |
resnet_eps, | |
resnet_act_fn, | |
attn_num_head_channels, | |
resnet_groups=None, | |
cross_attention_dim=None, | |
downsample_padding=None, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
resnet_time_scale_shift="default", | |
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, | |
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, | |
need_spatial_position_emb: bool = False, | |
need_t2i_ip_adapter: bool = False, | |
ip_adapter_cross_attn: bool = False, | |
need_t2i_facein: bool = False, | |
need_t2i_ip_adapter_face: bool = False, | |
need_adain_temporal_cond: bool = False, | |
resnet_2d_skip_time_act: bool = False, | |
need_refer_emb: bool = False, | |
): | |
if (isinstance(down_block_type, str) and down_block_type == "DownBlock3D") or ( | |
isinstance(down_block_type, nn.Module) | |
and down_block_type.__name__ == "DownBlock3D" | |
): | |
return DownBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
femb_channels=femb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temporal_conv_block=temporal_conv_block, | |
need_adain_temporal_cond=need_adain_temporal_cond, | |
resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
need_refer_emb=need_refer_emb, | |
attn_num_head_channels=attn_num_head_channels, | |
) | |
elif ( | |
isinstance(down_block_type, str) and down_block_type == "CrossAttnDownBlock3D" | |
) or ( | |
isinstance(down_block_type, nn.Module) | |
and down_block_type.__name__ == "CrossAttnDownBlock3D" | |
): | |
if cross_attention_dim is None: | |
raise ValueError( | |
"cross_attention_dim must be specified for CrossAttnDownBlock3D" | |
) | |
return CrossAttnDownBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
femb_channels=femb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attn_num_head_channels, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temporal_conv_block=temporal_conv_block, | |
temporal_transformer=temporal_transformer, | |
need_spatial_position_emb=need_spatial_position_emb, | |
need_t2i_ip_adapter=need_t2i_ip_adapter, | |
ip_adapter_cross_attn=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
need_adain_temporal_cond=need_adain_temporal_cond, | |
resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
need_refer_emb=need_refer_emb, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type, | |
num_layers, | |
in_channels, | |
out_channels, | |
prev_output_channel, | |
temb_channels, | |
femb_channels, | |
add_upsample, | |
resnet_eps, | |
resnet_act_fn, | |
attn_num_head_channels, | |
resnet_groups=None, | |
cross_attention_dim=None, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
resnet_time_scale_shift="default", | |
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, | |
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, | |
need_spatial_position_emb: bool = False, | |
need_t2i_ip_adapter: bool = False, | |
ip_adapter_cross_attn: bool = False, | |
need_t2i_facein: bool = False, | |
need_t2i_ip_adapter_face: bool = False, | |
need_adain_temporal_cond: bool = False, | |
resnet_2d_skip_time_act: bool = False, | |
): | |
if (isinstance(up_block_type, str) and up_block_type == "UpBlock3D") or ( | |
isinstance(up_block_type, nn.Module) and up_block_type.__name__ == "UpBlock3D" | |
): | |
return UpBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
femb_channels=femb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temporal_conv_block=temporal_conv_block, | |
need_adain_temporal_cond=need_adain_temporal_cond, | |
resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
) | |
elif (isinstance(up_block_type, str) and up_block_type == "CrossAttnUpBlock3D") or ( | |
isinstance(up_block_type, nn.Module) | |
and up_block_type.__name__ == "CrossAttnUpBlock3D" | |
): | |
if cross_attention_dim is None: | |
raise ValueError( | |
"cross_attention_dim must be specified for CrossAttnUpBlock3D" | |
) | |
return CrossAttnUpBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
femb_channels=femb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attn_num_head_channels, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temporal_conv_block=temporal_conv_block, | |
temporal_transformer=temporal_transformer, | |
need_spatial_position_emb=need_spatial_position_emb, | |
need_t2i_ip_adapter=need_t2i_ip_adapter, | |
ip_adapter_cross_attn=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
need_adain_temporal_cond=need_adain_temporal_cond, | |
resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class UNetMidBlock3DCrossAttn(nn.Module): | |
print_idx = 0 | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
femb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
output_scale_factor=1.0, | |
cross_attention_dim=1280, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
upcast_attention=False, | |
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, | |
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, | |
need_spatial_position_emb: bool = False, | |
need_t2i_ip_adapter: bool = False, | |
ip_adapter_cross_attn: bool = False, | |
need_t2i_facein: bool = False, | |
need_t2i_ip_adapter_face: bool = False, | |
need_adain_temporal_cond: bool = False, | |
resnet_2d_skip_time_act: bool = False, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.attn_num_head_channels = attn_num_head_channels | |
resnet_groups = ( | |
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
) | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=resnet_2d_skip_time_act, | |
) | |
] | |
if temporal_conv_block is not None: | |
temp_convs = [ | |
temporal_conv_block( | |
in_channels, | |
in_channels, | |
dropout=0.1, | |
femb_channels=femb_channels, | |
) | |
] | |
else: | |
temp_convs = [None] | |
attentions = [] | |
temp_attentions = [] | |
for _ in range(num_layers): | |
attentions.append( | |
Transformer2DModel( | |
attn_num_head_channels, | |
in_channels // attn_num_head_channels, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
cross_attn_temporal_cond=need_t2i_ip_adapter, | |
ip_adapter_cross_attn=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
) | |
) | |
if temporal_transformer is not None: | |
temp_attention = temporal_transformer( | |
attn_num_head_channels, | |
in_channels // attn_num_head_channels, | |
in_channels=in_channels, | |
num_layers=1, | |
femb_channels=femb_channels, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
need_spatial_position_emb=need_spatial_position_emb, | |
) | |
else: | |
temp_attention = None | |
temp_attentions.append(temp_attention) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=resnet_2d_skip_time_act, | |
) | |
) | |
if temporal_conv_block is not None: | |
temp_convs.append( | |
temporal_conv_block( | |
in_channels, | |
in_channels, | |
dropout=0.1, | |
femb_channels=femb_channels, | |
) | |
) | |
else: | |
temp_convs.append(None) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
self.attentions = nn.ModuleList(attentions) | |
self.temp_attentions = nn.ModuleList(temp_attentions) | |
self.need_adain_temporal_cond = need_adain_temporal_cond | |
def forward( | |
self, | |
hidden_states, | |
temb=None, | |
femb=None, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
num_frames=1, | |
cross_attention_kwargs=None, | |
sample_index: torch.LongTensor = None, | |
vision_conditon_frames_sample_index: torch.LongTensor = None, | |
spatial_position_emb: torch.Tensor = None, | |
refer_self_attn_emb: List[torch.Tensor] = None, | |
refer_self_attn_emb_mode: Literal["read", "write"] = "read", | |
): | |
hidden_states = self.resnets[0](hidden_states, temb) | |
if self.temp_convs[0] is not None: | |
hidden_states = self.temp_convs[0]( | |
hidden_states, | |
femb=femb, | |
num_frames=num_frames, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
) | |
for attn, temp_attn, resnet, temp_conv in zip( | |
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:] | |
): | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
self_attn_block_embs=refer_self_attn_emb, | |
self_attn_block_embs_mode=refer_self_attn_emb_mode, | |
).sample | |
if temp_attn is not None: | |
hidden_states = temp_attn( | |
hidden_states, | |
femb=femb, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_hidden_states=encoder_hidden_states, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
).sample | |
hidden_states = resnet(hidden_states, temb) | |
if temp_conv is not None: | |
hidden_states = temp_conv( | |
hidden_states, | |
femb=femb, | |
num_frames=num_frames, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
) | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
self.print_idx += 1 | |
return hidden_states | |
class CrossAttnDownBlock3D(nn.Module): | |
print_idx = 0 | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
femb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
cross_attention_dim=1280, | |
output_scale_factor=1.0, | |
downsample_padding=1, | |
add_downsample=True, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, | |
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, | |
need_spatial_position_emb: bool = False, | |
need_t2i_ip_adapter: bool = False, | |
ip_adapter_cross_attn: bool = False, | |
need_t2i_facein: bool = False, | |
need_t2i_ip_adapter_face: bool = False, | |
need_adain_temporal_cond: bool = False, | |
resnet_2d_skip_time_act: bool = False, | |
need_refer_emb: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
temp_attentions = [] | |
temp_convs = [] | |
self.has_cross_attention = True | |
self.attn_num_head_channels = attn_num_head_channels | |
self.need_refer_emb = need_refer_emb | |
if need_refer_emb: | |
refer_emb_attns = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=resnet_2d_skip_time_act, | |
) | |
) | |
if temporal_conv_block is not None: | |
temp_convs.append( | |
temporal_conv_block( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
femb_channels=femb_channels, | |
) | |
) | |
else: | |
temp_convs.append(None) | |
attentions.append( | |
Transformer2DModel( | |
attn_num_head_channels, | |
out_channels // attn_num_head_channels, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
cross_attn_temporal_cond=need_t2i_ip_adapter, | |
ip_adapter_cross_attn=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
) | |
) | |
if temporal_transformer is not None: | |
temp_attention = temporal_transformer( | |
attn_num_head_channels, | |
out_channels // attn_num_head_channels, | |
in_channels=out_channels, | |
num_layers=1, | |
femb_channels=femb_channels, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
need_spatial_position_emb=need_spatial_position_emb, | |
) | |
else: | |
temp_attention = None | |
temp_attentions.append(temp_attention) | |
if need_refer_emb: | |
refer_emb_attns.append( | |
ReferEmbFuseAttention( | |
query_dim=out_channels, | |
heads=attn_num_head_channels, | |
dim_head=out_channels // attn_num_head_channels, | |
dropout=0, | |
bias=False, | |
cross_attention_dim=None, | |
upcast_attention=False, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
self.attentions = nn.ModuleList(attentions) | |
self.temp_attentions = nn.ModuleList(temp_attentions) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
if need_refer_emb: | |
refer_emb_attns.append( | |
ReferEmbFuseAttention( | |
query_dim=out_channels, | |
heads=attn_num_head_channels, | |
dim_head=out_channels // attn_num_head_channels, | |
dropout=0, | |
bias=False, | |
cross_attention_dim=None, | |
upcast_attention=False, | |
) | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
self.need_adain_temporal_cond = need_adain_temporal_cond | |
if need_refer_emb: | |
self.refer_emb_attns = nn.ModuleList(refer_emb_attns) | |
logger.debug(f"cross attn downblock 3d need_refer_emb, {self.need_refer_emb}") | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
femb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
sample_index: torch.LongTensor = None, | |
vision_conditon_frames_sample_index: torch.LongTensor = None, | |
spatial_position_emb: torch.Tensor = None, | |
refer_embs: Optional[List[torch.Tensor]] = None, | |
refer_self_attn_emb: List[torch.Tensor] = None, | |
refer_self_attn_emb_mode: Literal["read", "write"] = "read", | |
): | |
# TODO(Patrick, William) - attention mask is not used | |
output_states = () | |
for i_downblock, (resnet, temp_conv, attn, temp_attn) in enumerate( | |
zip(self.resnets, self.temp_convs, self.attentions, self.temp_attentions) | |
): | |
# print("crossattndownblock3d, attn,", type(attn), cross_attention_kwargs) | |
if self.training and self.gradient_checkpointing: | |
if self.print_idx == 0: | |
logger.debug( | |
f"self.training and self.gradient_checkpointing={self.training and self.gradient_checkpointing}" | |
) | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
if self.print_idx == 0: | |
logger.debug(f"unet3d after resnet {hidden_states.mean()}") | |
if temp_conv is not None: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(temp_conv), | |
hidden_states, | |
num_frames, | |
sample_index, | |
vision_conditon_frames_sample_index, | |
femb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn, return_dict=False), | |
hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # added_cond_kwargs | |
None, # class_labels | |
cross_attention_kwargs, | |
attention_mask, | |
encoder_attention_mask, | |
refer_self_attn_emb, | |
refer_self_attn_emb_mode, | |
**ckpt_kwargs, | |
)[0] | |
if temp_attn is not None: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(temp_attn, return_dict=False), | |
hidden_states, | |
femb, | |
# None, # encoder_hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # class_labels | |
num_frames, | |
cross_attention_kwargs, | |
sample_index, | |
vision_conditon_frames_sample_index, | |
spatial_position_emb, | |
**ckpt_kwargs, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if self.print_idx == 0: | |
logger.debug(f"unet3d after resnet {hidden_states.mean()}") | |
if temp_conv is not None: | |
hidden_states = temp_conv( | |
hidden_states, | |
femb=femb, | |
num_frames=num_frames, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
self_attn_block_embs=refer_self_attn_emb, | |
self_attn_block_embs_mode=refer_self_attn_emb_mode, | |
).sample | |
if temp_attn is not None: | |
hidden_states = temp_attn( | |
hidden_states, | |
femb=femb, | |
num_frames=num_frames, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
).sample | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
# 使用 attn 的方式 来融合 down_block_refer_emb | |
if self.print_idx == 0: | |
logger.debug( | |
f"downblock, {i_downblock}, self.need_refer_emb={self.need_refer_emb}" | |
) | |
if self.need_refer_emb and refer_embs is not None: | |
if self.print_idx == 0: | |
logger.debug( | |
f"{i_downblock}, self.refer_emb_attns {refer_embs[i_downblock].shape}" | |
) | |
hidden_states = self.refer_emb_attns[i_downblock]( | |
hidden_states, refer_embs[i_downblock], num_frames=num_frames | |
) | |
else: | |
if self.print_idx == 0: | |
logger.debug(f"crossattndownblock refer_emb_attns, no this step") | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
# 使用 attn 的方式 来融合 down_block_refer_emb | |
# TODO: adain和 refer_emb的顺序 | |
# TODO:adain 首帧特征还是refer_emb的 | |
if self.need_refer_emb and refer_embs is not None: | |
i_downblock += 1 | |
hidden_states = self.refer_emb_attns[i_downblock]( | |
hidden_states, refer_embs[i_downblock], num_frames=num_frames | |
) | |
output_states += (hidden_states,) | |
self.print_idx += 1 | |
return hidden_states, output_states | |
class DownBlock3D(nn.Module): | |
print_idx = 0 | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
femb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor=1.0, | |
add_downsample=True, | |
downsample_padding=1, | |
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, | |
need_adain_temporal_cond: bool = False, | |
resnet_2d_skip_time_act: bool = False, | |
need_refer_emb: bool = False, | |
attn_num_head_channels: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
temp_convs = [] | |
self.need_refer_emb = need_refer_emb | |
if need_refer_emb: | |
refer_emb_attns = [] | |
self.attn_num_head_channels = attn_num_head_channels | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=resnet_2d_skip_time_act, | |
) | |
) | |
if temporal_conv_block is not None: | |
temp_convs.append( | |
temporal_conv_block( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
femb_channels=femb_channels, | |
) | |
) | |
else: | |
temp_convs.append(None) | |
if need_refer_emb: | |
refer_emb_attns.append( | |
ReferEmbFuseAttention( | |
query_dim=out_channels, | |
heads=attn_num_head_channels, | |
dim_head=out_channels // attn_num_head_channels, | |
dropout=0, | |
bias=False, | |
cross_attention_dim=None, | |
upcast_attention=False, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
if need_refer_emb: | |
refer_emb_attns.append( | |
ReferEmbFuseAttention( | |
query_dim=out_channels, | |
heads=attn_num_head_channels, | |
dim_head=out_channels // attn_num_head_channels, | |
dropout=0, | |
bias=False, | |
cross_attention_dim=None, | |
upcast_attention=False, | |
) | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
self.need_adain_temporal_cond = need_adain_temporal_cond | |
if need_refer_emb: | |
self.refer_emb_attns = nn.ModuleList(refer_emb_attns) | |
def forward( | |
self, | |
hidden_states, | |
temb=None, | |
num_frames=1, | |
sample_index: torch.LongTensor = None, | |
vision_conditon_frames_sample_index: torch.LongTensor = None, | |
spatial_position_emb: torch.Tensor = None, | |
femb=None, | |
refer_embs: Optional[Tuple[torch.Tensor]] = None, | |
refer_self_attn_emb: List[torch.Tensor] = None, | |
refer_self_attn_emb_mode: Literal["read", "write"] = "read", | |
): | |
output_states = () | |
for i_downblock, (resnet, temp_conv) in enumerate( | |
zip(self.resnets, self.temp_convs) | |
): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
if temp_conv is not None: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(temp_conv), | |
hidden_states, | |
num_frames, | |
sample_index, | |
vision_conditon_frames_sample_index, | |
femb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if temp_conv is not None: | |
hidden_states = temp_conv( | |
hidden_states, | |
femb=femb, | |
num_frames=num_frames, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
) | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
if self.need_refer_emb and refer_embs is not None: | |
hidden_states = self.refer_emb_attns[i_downblock]( | |
hidden_states, refer_embs[i_downblock], num_frames=num_frames | |
) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
if self.need_refer_emb and refer_embs is not None: | |
i_downblock += 1 | |
hidden_states = self.refer_emb_attns[i_downblock]( | |
hidden_states, refer_embs[i_downblock], num_frames=num_frames | |
) | |
output_states += (hidden_states,) | |
self.print_idx += 1 | |
return hidden_states, output_states | |
class CrossAttnUpBlock3D(nn.Module): | |
print_idx = 0 | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
femb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
cross_attention_dim=1280, | |
output_scale_factor=1.0, | |
add_upsample=True, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, | |
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, | |
need_spatial_position_emb: bool = False, | |
need_t2i_ip_adapter: bool = False, | |
ip_adapter_cross_attn: bool = False, | |
need_t2i_facein: bool = False, | |
need_t2i_ip_adapter_face: bool = False, | |
need_adain_temporal_cond: bool = False, | |
resnet_2d_skip_time_act: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
temp_convs = [] | |
attentions = [] | |
temp_attentions = [] | |
self.has_cross_attention = True | |
self.attn_num_head_channels = attn_num_head_channels | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=resnet_2d_skip_time_act, | |
) | |
) | |
if temporal_conv_block is not None: | |
temp_convs.append( | |
temporal_conv_block( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
femb_channels=femb_channels, | |
) | |
) | |
else: | |
temp_convs.append(None) | |
attentions.append( | |
Transformer2DModel( | |
attn_num_head_channels, | |
out_channels // attn_num_head_channels, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
cross_attn_temporal_cond=need_t2i_ip_adapter, | |
ip_adapter_cross_attn=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
) | |
) | |
if temporal_transformer is not None: | |
temp_attention = temporal_transformer( | |
attn_num_head_channels, | |
out_channels // attn_num_head_channels, | |
in_channels=out_channels, | |
num_layers=1, | |
femb_channels=femb_channels, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
need_spatial_position_emb=need_spatial_position_emb, | |
) | |
else: | |
temp_attention = None | |
temp_attentions.append(temp_attention) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
self.attentions = nn.ModuleList(attentions) | |
self.temp_attentions = nn.ModuleList(temp_attentions) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.need_adain_temporal_cond = need_adain_temporal_cond | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
femb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
sample_index: torch.LongTensor = None, | |
vision_conditon_frames_sample_index: torch.LongTensor = None, | |
spatial_position_emb: torch.Tensor = None, | |
refer_self_attn_emb: List[torch.Tensor] = None, | |
refer_self_attn_emb_mode: Literal["read", "write"] = "read", | |
): | |
for resnet, temp_conv, attn, temp_attn in zip( | |
self.resnets, self.temp_convs, self.attentions, self.temp_attentions | |
): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
if temp_conv is not None: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(temp_conv), | |
hidden_states, | |
num_frames, | |
sample_index, | |
vision_conditon_frames_sample_index, | |
femb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn, return_dict=False), | |
hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # added_cond_kwargs | |
None, # class_labels | |
cross_attention_kwargs, | |
attention_mask, | |
encoder_attention_mask, | |
refer_self_attn_emb, | |
refer_self_attn_emb_mode, | |
**ckpt_kwargs, | |
)[0] | |
if temp_attn is not None: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(temp_attn, return_dict=False), | |
hidden_states, | |
femb, | |
# None, # encoder_hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # class_labels | |
num_frames, | |
cross_attention_kwargs, | |
sample_index, | |
vision_conditon_frames_sample_index, | |
spatial_position_emb, | |
**ckpt_kwargs, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if temp_conv is not None: | |
hidden_states = temp_conv( | |
hidden_states, | |
num_frames=num_frames, | |
femb=femb, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
self_attn_block_embs=refer_self_attn_emb, | |
self_attn_block_embs_mode=refer_self_attn_emb_mode, | |
).sample | |
if temp_attn is not None: | |
hidden_states = temp_attn( | |
hidden_states, | |
femb=femb, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_hidden_states=encoder_hidden_states, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
).sample | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
self.print_idx += 1 | |
return hidden_states | |
class UpBlock3D(nn.Module): | |
print_idx = 0 | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
femb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor=1.0, | |
add_upsample=True, | |
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, | |
need_adain_temporal_cond: bool = False, | |
resnet_2d_skip_time_act: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
temp_convs = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=resnet_2d_skip_time_act, | |
) | |
) | |
if temporal_conv_block is not None: | |
temp_convs.append( | |
temporal_conv_block( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
femb_channels=femb_channels, | |
) | |
) | |
else: | |
temp_convs.append(None) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.need_adain_temporal_cond = need_adain_temporal_cond | |
def forward( | |
self, | |
hidden_states, | |
res_hidden_states_tuple, | |
temb=None, | |
upsample_size=None, | |
num_frames=1, | |
sample_index: torch.LongTensor = None, | |
vision_conditon_frames_sample_index: torch.LongTensor = None, | |
spatial_position_emb: torch.Tensor = None, | |
femb=None, | |
refer_self_attn_emb: List[torch.Tensor] = None, | |
refer_self_attn_emb_mode: Literal["read", "write"] = "read", | |
): | |
for resnet, temp_conv in zip(self.resnets, self.temp_convs): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
if temp_conv is not None: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(temp_conv), | |
hidden_states, | |
num_frames, | |
sample_index, | |
vision_conditon_frames_sample_index, | |
femb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if temp_conv is not None: | |
hidden_states = temp_conv( | |
hidden_states, | |
num_frames=num_frames, | |
femb=femb, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
) | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
if ( | |
self.need_adain_temporal_cond | |
and num_frames > 1 | |
and sample_index is not None | |
): | |
if self.print_idx == 0: | |
logger.debug(f"adain to vision_condition") | |
hidden_states = batch_adain_conditioned_tensor( | |
hidden_states, | |
num_frames=num_frames, | |
need_style_fidelity=False, | |
src_index=sample_index, | |
dst_index=vision_conditon_frames_sample_index, | |
) | |
self.print_idx += 1 | |
return hidden_states | |