Spaces:
No application file
No application file
# Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved. | |
# Copyright 2023 The ModelScope Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Adapted from https://github.com/huggingface/diffusers/blob/v0.16.1/src/diffusers/models/unet_3d_condition.py | |
# 1. 增加了from_pretrained,将模型从2D blocks改为3D blocks | |
# 1. add from_pretrained, change model from 2D blocks to 3D blocks | |
from copy import deepcopy | |
from dataclasses import dataclass | |
import inspect | |
from pprint import pprint, pformat | |
from typing import Any, Dict, List, Optional, Tuple, Union, Literal | |
import os | |
import logging | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from einops import rearrange, repeat | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import UNet2DConditionLoadersMixin | |
from diffusers.utils import BaseOutput | |
# from diffusers.utils import logging | |
from diffusers.models.embeddings import ( | |
TimestepEmbedding, | |
Timesteps, | |
) | |
from diffusers.models.modeling_utils import ModelMixin, load_state_dict | |
from diffusers import __version__ | |
from diffusers.utils import ( | |
CONFIG_NAME, | |
DIFFUSERS_CACHE, | |
FLAX_WEIGHTS_NAME, | |
HF_HUB_OFFLINE, | |
SAFETENSORS_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
_add_variant, | |
_get_model_file, | |
is_accelerate_available, | |
is_torch_version, | |
) | |
from diffusers.utils.import_utils import _safetensors_available | |
from diffusers.models.unet_3d_condition import ( | |
UNet3DConditionOutput, | |
UNet3DConditionModel as DiffusersUNet3DConditionModel, | |
) | |
from diffusers.models.attention_processor import ( | |
Attention, | |
AttentionProcessor, | |
AttnProcessor, | |
AttnProcessor2_0, | |
XFormersAttnProcessor, | |
) | |
from ..models import Model_Register | |
from .resnet import TemporalConvLayer | |
from .temporal_transformer import ( | |
TransformerTemporalModel, | |
) | |
from .embeddings import get_2d_sincos_pos_embed, resize_spatial_position_emb | |
from .unet_3d_blocks import ( | |
CrossAttnDownBlock3D, | |
CrossAttnUpBlock3D, | |
DownBlock3D, | |
UNetMidBlock3DCrossAttn, | |
UpBlock3D, | |
get_down_block, | |
get_up_block, | |
) | |
from ..data.data_util import ( | |
adaptive_instance_normalization, | |
align_repeat_tensor_single_dim, | |
batch_adain_conditioned_tensor, | |
batch_concat_two_tensor_with_index, | |
concat_two_tensor, | |
concat_two_tensor_with_index, | |
) | |
from .attention_processor import BaseIPAttnProcessor | |
from .attention_processor import ReferEmbFuseAttention | |
from .transformer_2d import Transformer2DModel | |
from .attention import BasicTransformerBlock | |
logger = logging.getLogger(__name__) # pylint: disable=invalid-name | |
# if is_torch_version(">=", "1.9.0"): | |
# _LOW_CPU_MEM_USAGE_DEFAULT = True | |
# else: | |
# _LOW_CPU_MEM_USAGE_DEFAULT = False | |
_LOW_CPU_MEM_USAGE_DEFAULT = False | |
if is_accelerate_available(): | |
import accelerate | |
from accelerate.utils import set_module_tensor_to_device | |
from accelerate.utils.versions import is_torch_version | |
import safetensors | |
def hack_t2i_sd_layer_attn_with_ip( | |
unet: nn.Module, | |
self_attn_class: BaseIPAttnProcessor = None, | |
cross_attn_class: BaseIPAttnProcessor = None, | |
): | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
if "temp_attentions" in name or "transformer_in" in name: | |
continue | |
if name.endswith("attn1.processor") and self_attn_class is not None: | |
attn_procs[name] = self_attn_class() | |
if unet.print_idx == 0: | |
logger.debug( | |
f"hack attn_processor of {name} to {attn_procs[name].__class__.__name__}" | |
) | |
elif name.endswith("attn2.processor") and cross_attn_class is not None: | |
attn_procs[name] = cross_attn_class() | |
if unet.print_idx == 0: | |
logger.debug( | |
f"hack attn_processor of {name} to {attn_procs[name].__class__.__name__}" | |
) | |
unet.set_attn_processor(attn_procs, strict=False) | |
def convert_2D_to_3D( | |
module_names, | |
valid_modules=( | |
"CrossAttnDownBlock2D", | |
"CrossAttnUpBlock2D", | |
"DownBlock2D", | |
"UNetMidBlock2DCrossAttn", | |
"UpBlock2D", | |
), | |
): | |
if not isinstance(module_names, list): | |
return module_names.replace("2D", "3D") | |
return_modules = [] | |
for module_name in module_names: | |
if module_name in valid_modules: | |
return_modules.append(module_name.replace("2D", "3D")) | |
else: | |
return_modules.append(module_name) | |
return return_modules | |
def insert_spatial_self_attn_idx(unet): | |
pass | |
class UNet3DConditionOutput(BaseOutput): | |
""" | |
The output of [`UNet3DConditionModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor | |
class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
r""" | |
UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep | |
and returns sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the models (such as downloading or saving, etc.) | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. | |
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
The tuple of upsample blocks to use. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
If `None`, it will skip the normalization and activation layers in post-processing | |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. | |
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
""" | |
_supports_gradient_checkpointing = True | |
print_idx = 0 | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"DownBlock3D", | |
), | |
up_block_types: Tuple[str] = ( | |
"UpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
), | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: int = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1024, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
temporal_conv_block: str = "TemporalConvLayer", | |
temporal_transformer: str = "TransformerTemporalModel", | |
need_spatial_position_emb: bool = False, | |
need_transformer_in: bool = True, | |
need_t2i_ip_adapter: bool = False, # self_attn, t2i.attn1 | |
need_adain_temporal_cond: bool = False, | |
t2i_ip_adapter_attn_processor: str = "NonParamT2ISelfReferenceXFormersAttnProcessor", | |
keep_vision_condtion: bool = False, | |
use_anivv1_cfg: bool = False, | |
resnet_2d_skip_time_act: bool = False, | |
need_zero_vis_cond_temb: bool = True, | |
norm_spatial_length: bool = False, | |
spatial_max_length: int = 2048, | |
need_refer_emb: bool = False, | |
ip_adapter_cross_attn: bool = False, # cross_attn, t2i.attn2 | |
t2i_crossattn_ip_adapter_attn_processor: str = "T2IReferencenetIPAdapterXFormersAttnProcessor", | |
need_t2i_facein: bool = False, | |
need_t2i_ip_adapter_face: bool = False, | |
need_vis_cond_mask: bool = False, | |
): | |
"""_summary_ | |
Args: | |
sample_size (Optional[int], optional): _description_. Defaults to None. | |
in_channels (int, optional): _description_. Defaults to 4. | |
out_channels (int, optional): _description_. Defaults to 4. | |
down_block_types (Tuple[str], optional): _description_. Defaults to ( "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D", ). | |
up_block_types (Tuple[str], optional): _description_. Defaults to ( "UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", ). | |
block_out_channels (Tuple[int], optional): _description_. Defaults to (320, 640, 1280, 1280). | |
layers_per_block (int, optional): _description_. Defaults to 2. | |
downsample_padding (int, optional): _description_. Defaults to 1. | |
mid_block_scale_factor (float, optional): _description_. Defaults to 1. | |
act_fn (str, optional): _description_. Defaults to "silu". | |
norm_num_groups (Optional[int], optional): _description_. Defaults to 32. | |
norm_eps (float, optional): _description_. Defaults to 1e-5. | |
cross_attention_dim (int, optional): _description_. Defaults to 1024. | |
attention_head_dim (Union[int, Tuple[int]], optional): _description_. Defaults to 8. | |
temporal_conv_block (str, optional): 3D卷积字符串,需要注册在 Model_Register. Defaults to "TemporalConvLayer". | |
temporal_transformer (str, optional): 时序 Transformer block字符串,需要定义在 Model_Register. Defaults to "TransformerTemporalModel". | |
need_spatial_position_emb (bool, optional): 是否需要 spatial hw 的emb,需要配合 thw attn使用. Defaults to False. | |
need_transformer_in (bool, optional): 是否需要 第一个 temporal_transformer_block. Defaults to True. | |
need_t2i_ip_adapter (bool, optional): T2I 模块是否需要面向视觉条件帧的 attn. Defaults to False. | |
need_adain_temporal_cond (bool, optional): 是否需要面向首帧 使用Adain. Defaults to False. | |
t2i_ip_adapter_attn_processor (str, optional): | |
t2i attn_processor的优化版,需配合need_t2i_ip_adapter使用, | |
有 NonParam 表示无参ReferenceOnly-attn,没有表示有参 IpAdapter. | |
Defaults to "NonParamT2ISelfReferenceXFormersAttnProcessor". | |
keep_vision_condtion (bool, optional): 是否对视觉条件帧不加 timestep emb. Defaults to False. | |
use_anivv1_cfg (bool, optional): 一些基本配置 是否延续AnivV设计. Defaults to False. | |
resnet_2d_skip_time_act (bool, optional): 配合use_anivv1_cfg,修改 transformer 2d block. Defaults to False. | |
need_zero_vis_cond_temb (bool, optional): 目前无效参数. Defaults to True. | |
norm_spatial_length (bool, optional): 是否需要 norm_spatial_length,只有当 need_spatial_position_emb= True时,才有效. Defaults to False. | |
spatial_max_length (int, optional): 归一化长度. Defaults to 2048. | |
Raises: | |
ValueError: _description_ | |
ValueError: _description_ | |
ValueError: _description_ | |
""" | |
super(UNet3DConditionModel, self).__init__() | |
self.keep_vision_condtion = keep_vision_condtion | |
self.use_anivv1_cfg = use_anivv1_cfg | |
self.sample_size = sample_size | |
self.resnet_2d_skip_time_act = resnet_2d_skip_time_act | |
self.need_zero_vis_cond_temb = need_zero_vis_cond_temb | |
self.norm_spatial_length = norm_spatial_length | |
self.spatial_max_length = spatial_max_length | |
self.need_refer_emb = need_refer_emb | |
self.ip_adapter_cross_attn = ip_adapter_cross_attn | |
self.need_t2i_facein = need_t2i_facein | |
self.need_t2i_ip_adapter_face = need_t2i_ip_adapter_face | |
logger.debug(f"need_t2i_ip_adapter_face={need_t2i_ip_adapter_face}") | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len( | |
down_block_types | |
): | |
raise ValueError( | |
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
conv_in_kernel = 3 | |
conv_out_kernel = 3 | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[0], | |
kernel_size=conv_in_kernel, | |
padding=conv_in_padding, | |
) | |
# time | |
time_embed_dim = block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], True, 0) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, | |
time_embed_dim, | |
act_fn=act_fn, | |
) | |
if use_anivv1_cfg: | |
self.time_nonlinearity = nn.SiLU() | |
# frame | |
frame_embed_dim = block_out_channels[0] * 4 | |
self.frame_proj = Timesteps(block_out_channels[0], True, 0) | |
frame_input_dim = block_out_channels[0] | |
if temporal_transformer is not None: | |
self.frame_embedding = TimestepEmbedding( | |
frame_input_dim, | |
frame_embed_dim, | |
act_fn=act_fn, | |
) | |
else: | |
self.frame_embedding = None | |
if use_anivv1_cfg: | |
self.femb_nonlinearity = nn.SiLU() | |
# spatial_position_emb | |
self.need_spatial_position_emb = need_spatial_position_emb | |
if need_spatial_position_emb: | |
self.spatial_position_input_dim = block_out_channels[0] * 2 | |
self.spatial_position_embed_dim = block_out_channels[0] * 4 | |
self.spatial_position_embedding = TimestepEmbedding( | |
self.spatial_position_input_dim, | |
self.spatial_position_embed_dim, | |
act_fn=act_fn, | |
) | |
# 从模型注册表中获取 模型类 | |
temporal_conv_block = ( | |
Model_Register[temporal_conv_block] | |
if isinstance(temporal_conv_block, str) | |
and temporal_conv_block.lower() != "none" | |
else None | |
) | |
self.need_transformer_in = need_transformer_in | |
temporal_transformer = ( | |
Model_Register[temporal_transformer] | |
if isinstance(temporal_transformer, str) | |
and temporal_transformer.lower() != "none" | |
else None | |
) | |
self.need_vis_cond_mask = need_vis_cond_mask | |
if need_transformer_in and temporal_transformer is not None: | |
self.transformer_in = temporal_transformer( | |
num_attention_heads=attention_head_dim, | |
attention_head_dim=block_out_channels[0] // attention_head_dim, | |
in_channels=block_out_channels[0], | |
num_layers=1, | |
femb_channels=frame_embed_dim, | |
need_spatial_position_emb=need_spatial_position_emb, | |
cross_attention_dim=cross_attention_dim, | |
) | |
# class embedding | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
self.need_t2i_ip_adapter = need_t2i_ip_adapter | |
# 确定T2I Attn 是否加入 ReferenceOnly机制或Ipadaper机制 | |
# TODO:有待更好的实现机制, | |
need_t2i_ip_adapter_param = ( | |
t2i_ip_adapter_attn_processor is not None | |
and "NonParam" not in t2i_ip_adapter_attn_processor | |
and need_t2i_ip_adapter | |
) | |
self.need_adain_temporal_cond = need_adain_temporal_cond | |
self.t2i_ip_adapter_attn_processor = t2i_ip_adapter_attn_processor | |
if need_refer_emb: | |
self.first_refer_emb_attns = ReferEmbFuseAttention( | |
query_dim=block_out_channels[0], | |
heads=attention_head_dim[0], | |
dim_head=block_out_channels[0] // attention_head_dim[0], | |
dropout=0, | |
bias=False, | |
cross_attention_dim=None, | |
upcast_attention=False, | |
) | |
self.mid_block_refer_emb_attns = ReferEmbFuseAttention( | |
query_dim=block_out_channels[-1], | |
heads=attention_head_dim[-1], | |
dim_head=block_out_channels[-1] // attention_head_dim[-1], | |
dropout=0, | |
bias=False, | |
cross_attention_dim=None, | |
upcast_attention=False, | |
) | |
else: | |
self.first_refer_emb_attns = None | |
self.mid_block_refer_emb_attns = None | |
# down | |
output_channel = block_out_channels[0] | |
self.layers_per_block = layers_per_block | |
self.block_out_channels = block_out_channels | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
femb_channels=frame_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=False, | |
temporal_conv_block=temporal_conv_block, | |
temporal_transformer=temporal_transformer, | |
need_spatial_position_emb=need_spatial_position_emb, | |
need_t2i_ip_adapter=need_t2i_ip_adapter_param, | |
ip_adapter_cross_attn=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
need_adain_temporal_cond=need_adain_temporal_cond, | |
resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
need_refer_emb=need_refer_emb, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock3DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
femb_channels=frame_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=False, | |
temporal_conv_block=temporal_conv_block, | |
temporal_transformer=temporal_transformer, | |
need_spatial_position_emb=need_spatial_position_emb, | |
need_t2i_ip_adapter=need_t2i_ip_adapter_param, | |
ip_adapter_cross_attn=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
need_adain_temporal_cond=need_adain_temporal_cond, | |
resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
) | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[ | |
min(i + 1, len(block_out_channels) - 1) | |
] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
femb_channels=frame_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=reversed_attention_head_dim[i], | |
dual_cross_attention=False, | |
temporal_conv_block=temporal_conv_block, | |
temporal_transformer=temporal_transformer, | |
need_spatial_position_emb=need_spatial_position_emb, | |
need_t2i_ip_adapter=need_t2i_ip_adapter_param, | |
ip_adapter_cross_attn=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
need_adain_temporal_cond=need_adain_temporal_cond, | |
resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if norm_num_groups is not None: | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], | |
num_groups=norm_num_groups, | |
eps=norm_eps, | |
) | |
self.conv_act = nn.SiLU() | |
else: | |
self.conv_norm_out = None | |
self.conv_act = None | |
conv_out_padding = (conv_out_kernel - 1) // 2 | |
self.conv_out = nn.Conv2d( | |
block_out_channels[0], | |
out_channels, | |
kernel_size=conv_out_kernel, | |
padding=conv_out_padding, | |
) | |
self.insert_spatial_self_attn_idx() | |
# 根据需要hack attn_processor,实现ip_adapter等功能 | |
if need_t2i_ip_adapter or ip_adapter_cross_attn: | |
hack_t2i_sd_layer_attn_with_ip( | |
self, | |
self_attn_class=Model_Register[t2i_ip_adapter_attn_processor] | |
if t2i_ip_adapter_attn_processor is not None and need_t2i_ip_adapter | |
else None, | |
cross_attn_class=Model_Register[t2i_crossattn_ip_adapter_attn_processor] | |
if t2i_crossattn_ip_adapter_attn_processor is not None | |
and ( | |
ip_adapter_cross_attn or need_t2i_facein or need_t2i_ip_adapter_face | |
) | |
else None, | |
) | |
# logger.debug(pformat(self.attn_processors)) | |
# 非参数AttnProcessor,就不需要to_k_ip、to_v_ip参数了 | |
if ( | |
t2i_ip_adapter_attn_processor is None | |
or "NonParam" in t2i_ip_adapter_attn_processor | |
): | |
need_t2i_ip_adapter = False | |
if self.print_idx == 0: | |
logger.debug("Unet3Model Parameters") | |
# logger.debug(pformat(self.__dict__)) | |
# 会在 set_skip_temporal_layers 设置 skip_refer_downblock_emb | |
# 当为 True 时,会跳过 referencenet_block_emb的影响,主要用于首帧生成 | |
self.skip_refer_downblock_emb = False | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors( | |
name: str, | |
module: torch.nn.Module, | |
processors: Dict[str, AttentionProcessor], | |
): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
`"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_sliceable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_sliceable_dims(module) | |
num_sliceable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_sliceable_layers * [1] | |
slice_size = ( | |
num_sliceable_layers * [slice_size] | |
if not isinstance(slice_size, list) | |
else slice_size | |
) | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice( | |
module: torch.nn.Module, slice_size: List[int] | |
): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor( | |
self, | |
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], | |
strict: bool = True, | |
): | |
r""" | |
Parameters: | |
`processor (`dict` of `AttentionProcessor` or `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
of **all** `Attention` layers. | |
In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.: | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count and strict: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
logger.debug( | |
f"module {name} set attn processor {processor.__class__.__name__}" | |
) | |
module.set_processor(processor) | |
else: | |
if f"{name}.processor" in processor: | |
logger.debug( | |
"module {} set attn processor {}".format( | |
name, processor[f"{name}.processor"].__class__.__name__ | |
) | |
) | |
module.set_processor(processor.pop(f"{name}.processor")) | |
else: | |
logger.debug( | |
f"module {name} has no new target attn_processor, still use {module.processor.__class__.__name__} " | |
) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(AttnProcessor()) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance( | |
module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D) | |
): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
sample_index: torch.LongTensor = None, | |
vision_condition_frames_sample: torch.Tensor = None, | |
vision_conditon_frames_sample_index: torch.LongTensor = None, | |
sample_frame_rate: int = 10, | |
skip_temporal_layers: bool = None, | |
frame_index: torch.LongTensor = None, | |
down_block_refer_embs: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_refer_emb: Optional[torch.Tensor] = None, | |
refer_self_attn_emb: Optional[List[torch.Tensor]] = None, | |
refer_self_attn_emb_mode: Literal["read", "write"] = "read", | |
vision_clip_emb: torch.Tensor = None, | |
ip_adapter_scale: float = 1.0, | |
face_emb: torch.Tensor = None, | |
facein_scale: float = 1.0, | |
ip_adapter_face_emb: torch.Tensor = None, | |
ip_adapter_face_scale: float = 1.0, | |
do_classifier_free_guidance: bool = False, | |
pose_guider_emb: torch.Tensor = None, | |
) -> Union[UNet3DConditionOutput, Tuple]: | |
"""_summary_ | |
Args: | |
sample (torch.FloatTensor): _description_ | |
timestep (Union[torch.Tensor, float, int]): _description_ | |
encoder_hidden_states (torch.Tensor): _description_ | |
class_labels (Optional[torch.Tensor], optional): _description_. Defaults to None. | |
timestep_cond (Optional[torch.Tensor], optional): _description_. Defaults to None. | |
attention_mask (Optional[torch.Tensor], optional): _description_. Defaults to None. | |
cross_attention_kwargs (Optional[Dict[str, Any]], optional): _description_. Defaults to None. | |
down_block_additional_residuals (Optional[Tuple[torch.Tensor]], optional): _description_. Defaults to None. | |
mid_block_additional_residual (Optional[torch.Tensor], optional): _description_. Defaults to None. | |
return_dict (bool, optional): _description_. Defaults to True. | |
sample_index (torch.LongTensor, optional): _description_. Defaults to None. | |
vision_condition_frames_sample (torch.Tensor, optional): _description_. Defaults to None. | |
vision_conditon_frames_sample_index (torch.LongTensor, optional): _description_. Defaults to None. | |
sample_frame_rate (int, optional): _description_. Defaults to 10. | |
skip_temporal_layers (bool, optional): _description_. Defaults to None. | |
frame_index (torch.LongTensor, optional): _description_. Defaults to None. | |
up_block_additional_residual (Optional[torch.Tensor], optional): 用于up_block的 参考latent. Defaults to None. | |
down_block_refer_embs (Optional[torch.Tensor], optional): 用于 download 的 参考latent. Defaults to None. | |
how_fuse_referencenet_emb (Literal, optional): 如何融合 参考 latent. Defaults to ["add", "attn"]="add". | |
add: 要求 additional_latent 和 latent hw 同尺寸. hw of addtional_latent should be same as of latent | |
attn: concat bt*h1w1*c and bt*h2w2*c into bt*(h1w1+h2w2)*c, and then as key,value into attn | |
Raises: | |
ValueError: _description_ | |
Returns: | |
Union[UNet3DConditionOutput, Tuple]: _description_ | |
""" | |
if skip_temporal_layers is not None: | |
self.set_skip_temporal_layers(skip_temporal_layers) | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
# logger.debug("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
batch_size = sample.shape[0] | |
# when vision_condition_frames_sample is not None and vision_conditon_frames_sample_index is not None | |
# if not None, b c t h w -> b c (t + n_content ) h w | |
if vision_condition_frames_sample is not None: | |
sample = batch_concat_two_tensor_with_index( | |
sample, | |
sample_index, | |
vision_condition_frames_sample, | |
vision_conditon_frames_sample_index, | |
dim=2, | |
) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
batch_size, channel, num_frames, height, width = sample.shape | |
# 准备 timestep emb | |
timesteps = timesteps.expand(sample.shape[0]) | |
temb = self.time_proj(timesteps) | |
temb = temb.to(dtype=self.dtype) | |
emb = self.time_embedding(temb, timestep_cond) | |
if self.use_anivv1_cfg: | |
emb = self.time_nonlinearity(emb) | |
emb = emb.repeat_interleave(repeats=num_frames, dim=0) | |
# 一致性保持,使条件时序帧的 首帧 timesteps emb 为 0,即不影响视觉条件帧 | |
# keep consistent with the first frame of vision condition frames | |
if ( | |
self.keep_vision_condtion | |
and num_frames > 1 | |
and sample_index is not None | |
and vision_conditon_frames_sample_index is not None | |
): | |
emb = rearrange(emb, "(b t) d -> b t d", t=num_frames) | |
emb[:, vision_conditon_frames_sample_index, :] = 0 | |
emb = rearrange(emb, "b t d->(b t) d") | |
# temporal positional embedding | |
femb = None | |
if self.temporal_transformer is not None: | |
if frame_index is None: | |
frame_index = torch.arange( | |
num_frames, dtype=torch.long, device=sample.device | |
) | |
if self.use_anivv1_cfg: | |
frame_index = (frame_index * sample_frame_rate).to(dtype=torch.long) | |
femb = self.frame_proj(frame_index) | |
if self.print_idx == 0: | |
logger.debug( | |
f"unet prepare frame_index, {femb.shape}, {batch_size}" | |
) | |
femb = repeat(femb, "t d-> b t d", b=batch_size) | |
else: | |
# b t -> b t d | |
assert frame_index.ndim == 2, ValueError( | |
"ndim of given frame_index should be 2, but {frame_index.ndim}" | |
) | |
femb = torch.stack( | |
[self.frame_proj(frame_index[i]) for i in range(batch_size)], dim=0 | |
) | |
if self.temporal_transformer is not None: | |
femb = femb.to(dtype=self.dtype) | |
femb = self.frame_embedding( | |
femb, | |
) | |
if self.use_anivv1_cfg: | |
femb = self.femb_nonlinearity(femb) | |
if encoder_hidden_states.ndim == 3: | |
encoder_hidden_states = align_repeat_tensor_single_dim( | |
encoder_hidden_states, target_length=emb.shape[0], dim=0 | |
) | |
elif encoder_hidden_states.ndim == 4: | |
encoder_hidden_states = rearrange( | |
encoder_hidden_states, "b t n q-> (b t) n q" | |
) | |
else: | |
raise ValueError( | |
f"only support ndim in [3, 4], but given {encoder_hidden_states.ndim}" | |
) | |
if vision_clip_emb is not None: | |
if vision_clip_emb.ndim == 4: | |
vision_clip_emb = rearrange(vision_clip_emb, "b t n q-> (b t) n q") | |
# 准备 hw 层面的 spatial positional embedding | |
# prepare spatial_position_emb | |
if self.need_spatial_position_emb: | |
# height * width, self.spatial_position_input_dim | |
spatial_position_emb = get_2d_sincos_pos_embed( | |
embed_dim=self.spatial_position_input_dim, | |
grid_size_w=width, | |
grid_size_h=height, | |
cls_token=False, | |
norm_length=self.norm_spatial_length, | |
max_length=self.spatial_max_length, | |
) | |
spatial_position_emb = torch.from_numpy(spatial_position_emb).to( | |
device=sample.device, dtype=self.dtype | |
) | |
# height * width, self.spatial_position_embed_dim | |
spatial_position_emb = self.spatial_position_embedding(spatial_position_emb) | |
else: | |
spatial_position_emb = None | |
# prepare cross_attention_kwargs,ReferenceOnly/IpAdapter的attn_processor需要这些参数 进行 latenst和viscond_latents拆分运算 | |
if ( | |
self.need_t2i_ip_adapter | |
or self.ip_adapter_cross_attn | |
or self.need_t2i_facein | |
or self.need_t2i_ip_adapter_face | |
): | |
if cross_attention_kwargs is None: | |
cross_attention_kwargs = {} | |
cross_attention_kwargs["num_frames"] = num_frames | |
cross_attention_kwargs[ | |
"do_classifier_free_guidance" | |
] = do_classifier_free_guidance | |
cross_attention_kwargs["sample_index"] = sample_index | |
cross_attention_kwargs[ | |
"vision_conditon_frames_sample_index" | |
] = vision_conditon_frames_sample_index | |
if self.ip_adapter_cross_attn: | |
cross_attention_kwargs["vision_clip_emb"] = vision_clip_emb | |
cross_attention_kwargs["ip_adapter_scale"] = ip_adapter_scale | |
if self.need_t2i_facein: | |
if self.print_idx == 0: | |
logger.debug( | |
f"face_emb={type(face_emb)}, facein_scale={facein_scale}" | |
) | |
cross_attention_kwargs["face_emb"] = face_emb | |
cross_attention_kwargs["facein_scale"] = facein_scale | |
if self.need_t2i_ip_adapter_face: | |
if self.print_idx == 0: | |
logger.debug( | |
f"ip_adapter_face_emb={type(ip_adapter_face_emb)}, ip_adapter_face_scale={ip_adapter_face_scale}" | |
) | |
cross_attention_kwargs["ip_adapter_face_emb"] = ip_adapter_face_emb | |
cross_attention_kwargs["ip_adapter_face_scale"] = ip_adapter_face_scale | |
# 2. pre-process | |
sample = rearrange(sample, "b c t h w -> (b t) c h w") | |
sample = self.conv_in(sample) | |
if pose_guider_emb is not None: | |
if self.print_idx == 0: | |
logger.debug( | |
f"sample={sample.shape}, pose_guider_emb={pose_guider_emb.shape}" | |
) | |
sample = sample + pose_guider_emb | |
if self.print_idx == 0: | |
logger.debug(f"after conv in sample={sample.mean()}") | |
if spatial_position_emb is not None: | |
if self.print_idx == 0: | |
logger.debug( | |
f"unet3d, transformer_in, spatial_position_emb={spatial_position_emb.shape}" | |
) | |
if self.print_idx == 0: | |
logger.debug( | |
f"unet vision_conditon_frames_sample_index, {type(vision_conditon_frames_sample_index)}", | |
) | |
if vision_conditon_frames_sample_index is not None: | |
if self.print_idx == 0: | |
logger.debug( | |
f"vision_conditon_frames_sample_index shape {vision_conditon_frames_sample_index.shape}", | |
) | |
if self.print_idx == 0: | |
logger.debug(f"unet sample_index {type(sample_index)}") | |
if sample_index is not None: | |
if self.print_idx == 0: | |
logger.debug(f"sample_index shape {sample_index.shape}") | |
if self.need_transformer_in: | |
if self.print_idx == 0: | |
logger.debug(f"unet3d, transformer_in, sample={sample.shape}") | |
sample = self.transformer_in( | |
sample, | |
femb=femb, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_hidden_states=encoder_hidden_states, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
).sample | |
if ( | |
self.need_refer_emb | |
and down_block_refer_embs is not None | |
and not self.skip_refer_downblock_emb | |
): | |
if self.print_idx == 0: | |
logger.debug( | |
f"self.first_refer_emb_attns, {self.first_refer_emb_attns.__class__.__name__} {down_block_refer_embs[0].shape}" | |
) | |
sample = self.first_refer_emb_attns( | |
sample, down_block_refer_embs[0], num_frames=num_frames | |
) | |
if self.print_idx == 0: | |
logger.debug( | |
f"first_refer_emb_attns, sample is_leaf={sample.is_leaf}, requires_grad={sample.requires_grad}, down_block_refer_embs, {down_block_refer_embs[0].is_leaf}, {down_block_refer_embs[0].requires_grad}," | |
) | |
else: | |
if self.print_idx == 0: | |
logger.debug(f"first_refer_emb_attns, no this step") | |
# 将 refer_self_attn_emb 转化成字典,增加一个当前index,表示block 的对应关系 | |
# convert refer_self_attn_emb to dict, add a current index to represent the corresponding relationship of the block | |
# 3. down | |
down_block_res_samples = (sample,) | |
for i_down_block, downsample_block in enumerate(self.down_blocks): | |
# 使用 attn 的方式 来融合 refer_emb,这里是准备 downblock 对应的 refer_emb | |
# fuse refer_emb with attn, here is to prepare the refer_emb corresponding to downblock | |
if ( | |
not self.need_refer_emb | |
or down_block_refer_embs is None | |
or self.skip_refer_downblock_emb | |
): | |
this_down_block_refer_embs = None | |
if self.print_idx == 0: | |
logger.debug( | |
f"{i_down_block}, prepare this_down_block_refer_embs, is None" | |
) | |
else: | |
is_final_block = i_down_block == len(self.block_out_channels) - 1 | |
num_block = self.layers_per_block + int(not is_final_block * 1) | |
this_downblock_start_idx = 1 + num_block * i_down_block | |
this_down_block_refer_embs = down_block_refer_embs[ | |
this_downblock_start_idx : this_downblock_start_idx + num_block | |
] | |
if self.print_idx == 0: | |
logger.debug( | |
f"prepare this_down_block_refer_embs, {len(this_down_block_refer_embs)}, {this_down_block_refer_embs[0].shape}" | |
) | |
if self.print_idx == 0: | |
logger.debug(f"downsample_block {i_down_block}, sample={sample.mean()}") | |
if ( | |
hasattr(downsample_block, "has_cross_attention") | |
and downsample_block.has_cross_attention | |
): | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
femb=femb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
refer_embs=this_down_block_refer_embs, | |
refer_self_attn_emb=refer_self_attn_emb, | |
refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
) | |
else: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
femb=femb, | |
num_frames=num_frames, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
refer_embs=this_down_block_refer_embs, | |
refer_self_attn_emb=refer_self_attn_emb, | |
refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
) | |
# resize spatial_position_emb | |
if self.need_spatial_position_emb: | |
has_downblock = i_down_block < len(self.down_blocks) - 1 | |
if has_downblock: | |
spatial_position_emb = resize_spatial_position_emb( | |
spatial_position_emb, | |
scale=0.5, | |
height=sample.shape[2] * 2, | |
width=sample.shape[3] * 2, | |
) | |
down_block_res_samples += res_samples | |
if down_block_additional_residuals is not None: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = ( | |
down_block_res_sample + down_block_additional_residual | |
) | |
new_down_block_res_samples += (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
sample = self.mid_block( | |
hidden_states=sample, | |
temb=emb, | |
femb=femb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
refer_self_attn_emb=refer_self_attn_emb, | |
refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
) | |
# 使用 attn 的方式 来融合 mid_block_refer_emb | |
# fuse mid_block_refer_emb with attn | |
if ( | |
self.mid_block_refer_emb_attns is not None | |
and mid_block_refer_emb is not None | |
and not self.skip_refer_downblock_emb | |
): | |
if self.print_idx == 0: | |
logger.debug( | |
f"self.mid_block_refer_emb_attns={self.mid_block_refer_emb_attns}, mid_block_refer_emb={mid_block_refer_emb.shape}" | |
) | |
sample = self.mid_block_refer_emb_attns( | |
sample, mid_block_refer_emb, num_frames=num_frames | |
) | |
if self.print_idx == 0: | |
logger.debug( | |
f"mid_block_refer_emb_attns, sample is_leaf={sample.is_leaf}, requires_grad={sample.requires_grad}, mid_block_refer_emb, {mid_block_refer_emb[0].is_leaf}, {mid_block_refer_emb[0].requires_grad}," | |
) | |
else: | |
if self.print_idx == 0: | |
logger.debug(f"mid_block_refer_emb_attns, no this step") | |
if mid_block_additional_residual is not None: | |
sample = sample + mid_block_additional_residual | |
# 5. up | |
for i_up_block, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i_up_block == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[ | |
: -len(upsample_block.resnets) | |
] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if ( | |
hasattr(upsample_block, "has_cross_attention") | |
and upsample_block.has_cross_attention | |
): | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
femb=femb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
refer_self_attn_emb=refer_self_attn_emb, | |
refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
femb=femb, | |
res_hidden_states_tuple=res_samples, | |
upsample_size=upsample_size, | |
num_frames=num_frames, | |
sample_index=sample_index, | |
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
spatial_position_emb=spatial_position_emb, | |
refer_self_attn_emb=refer_self_attn_emb, | |
refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
) | |
# resize spatial_position_emb | |
if self.need_spatial_position_emb: | |
has_upblock = i_up_block < len(self.up_blocks) - 1 | |
if has_upblock: | |
spatial_position_emb = resize_spatial_position_emb( | |
spatial_position_emb, | |
scale=2, | |
height=int(sample.shape[2] / 2), | |
width=int(sample.shape[3] / 2), | |
) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
sample = rearrange(sample, "(b t) c h w -> b c t h w", t=num_frames) | |
# if self.need_adain_temporal_cond and num_frames > 1: | |
# sample = batch_adain_conditioned_tensor( | |
# sample, | |
# num_frames=num_frames, | |
# need_style_fidelity=False, | |
# src_index=sample_index, | |
# dst_index=vision_conditon_frames_sample_index, | |
# ) | |
self.print_idx += 1 | |
if skip_temporal_layers is not None: | |
self.set_skip_temporal_layers(not skip_temporal_layers) | |
if not return_dict: | |
return (sample,) | |
else: | |
return UNet3DConditionOutput(sample=sample) | |
# from https://github.com/huggingface/diffusers/blob/v0.16.1/src/diffusers/models/modeling_utils.py#L328 | |
def from_pretrained_2d( | |
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs | |
): | |
r""" | |
Instantiate a pretrained pytorch model from a pre-trained model configuration. | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train | |
the model, you should first set it back in training mode with `model.train()`. | |
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come | |
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning | |
task. | |
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those | |
weights are discarded. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. | |
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., | |
`./my_model_directory/`. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype | |
will be automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether or not to only look at local files (i.e., do not try to download the model). | |
use_auth_token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `diffusers-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
from_flax (`bool`, *optional*, defaults to `False`): | |
Load the model weights from a Flax checkpoint save file. | |
subfolder (`str`, *optional*, defaults to `""`): | |
In case the relevant files are located inside a subfolder of the model repo (either remote in | |
huggingface.co or downloaded locally), you can specify the folder name here. | |
mirror (`str`, *optional*): | |
Mirror source to accelerate downloads in China. If you are from China and have an accessibility | |
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. | |
Please refer to the mirror site for more information. | |
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
A map that specifies where each submodule should go. It doesn't need to be refined to each | |
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the | |
same device. | |
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For | |
more information about each option see [designing a device | |
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This | |
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the | |
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, | |
setting this argument to `True` will raise an error. | |
variant (`str`, *optional*): | |
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is | |
ignored when using `from_flax`. | |
use_safetensors (`bool`, *optional* ): | |
If set to `True`, the pipeline will forcibly load the models from `safetensors` weights. If set to | |
`None` (the default). The pipeline will load using `safetensors` if safetensors weights are available | |
*and* if `safetensors` is installed. If the to `False` the pipeline will *not* use `safetensors`. | |
<Tip> | |
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated | |
models](https://huggingface.co/docs/hub/models-gated#gated-models). | |
</Tip> | |
<Tip> | |
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use | |
this method in a firewalled environment. | |
</Tip> | |
""" | |
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
force_download = kwargs.pop("force_download", False) | |
from_flax = kwargs.pop("from_flax", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
output_loading_info = kwargs.pop("output_loading_info", False) | |
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
subfolder = kwargs.pop("subfolder", None) | |
device_map = kwargs.pop("device_map", None) | |
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) | |
variant = kwargs.pop("variant", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
strict = kwargs.pop("strict", True) | |
allow_pickle = False | |
if use_safetensors is None: | |
allow_pickle = True | |
if low_cpu_mem_usage and not is_accelerate_available(): | |
low_cpu_mem_usage = False | |
logger.warning( | |
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
" install accelerate\n```\n." | |
) | |
if device_map is not None and not is_accelerate_available(): | |
raise NotImplementedError( | |
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" | |
" `device_map=None`. You can install accelerate with `pip install accelerate`." | |
) | |
# Check if we can handle device_map and dispatching the weights | |
if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `device_map=None`." | |
) | |
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `low_cpu_mem_usage=False`." | |
) | |
if low_cpu_mem_usage is False and device_map is not None: | |
raise ValueError( | |
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" | |
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." | |
) | |
# Load config if we don't provide a configuration | |
config_path = pretrained_model_name_or_path | |
user_agent = { | |
"diffusers": __version__, | |
"file_type": "model", | |
"framework": "pytorch", | |
} | |
# load config | |
config, unused_kwargs, commit_hash = cls.load_config( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
return_commit_hash=True, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
device_map=device_map, | |
user_agent=user_agent, | |
**kwargs, | |
) | |
config["_class_name"] = cls.__name__ | |
config["down_block_types"] = convert_2D_to_3D(config["down_block_types"]) | |
if "mid_block_type" in config: | |
config["mid_block_type"] = convert_2D_to_3D(config["mid_block_type"]) | |
else: | |
config["mid_block_type"] = "UNetMidBlock3DCrossAttn" | |
config["up_block_types"] = convert_2D_to_3D(config["up_block_types"]) | |
# load model | |
model_file = None | |
if from_flax: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=FLAX_WEIGHTS_NAME, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
model = cls.from_config(config, **unused_kwargs) | |
# Convert the weights | |
from diffusers.models.modeling_pytorch_flax_utils import ( | |
load_flax_checkpoint_in_pytorch_model, | |
) | |
model = load_flax_checkpoint_in_pytorch_model(model, model_file) | |
else: | |
try: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
except IOError as e: | |
if not allow_pickle: | |
raise e | |
pass | |
if model_file is None: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
if low_cpu_mem_usage: | |
# Instantiate model with empty weights | |
with accelerate.init_empty_weights(): | |
model = cls.from_config(config, **unused_kwargs) | |
# if device_map is None, load the state dict and move the params from meta device to the cpu | |
if device_map is None: | |
param_device = "cpu" | |
state_dict = load_state_dict(model_file, variant=variant) | |
# move the params from meta device to cpu | |
missing_keys = set(model.state_dict().keys()) - set( | |
state_dict.keys() | |
) | |
if len(missing_keys) > 0: | |
if strict: | |
raise ValueError( | |
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" | |
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
" those weights or else make sure your checkpoint file is correct." | |
) | |
else: | |
logger.warning( | |
f"model{cls} has no target pretrained paramter from {pretrained_model_name_or_path}, {', '.join(missing_keys)}" | |
) | |
empty_state_dict = model.state_dict() | |
for param_name, param in state_dict.items(): | |
accepts_dtype = "dtype" in set( | |
inspect.signature( | |
set_module_tensor_to_device | |
).parameters.keys() | |
) | |
if empty_state_dict[param_name].shape != param.shape: | |
raise ValueError( | |
f"Cannot load {pretrained_model_name_or_path} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example." | |
) | |
if accepts_dtype: | |
set_module_tensor_to_device( | |
model, | |
param_name, | |
param_device, | |
value=param, | |
dtype=torch_dtype, | |
) | |
else: | |
set_module_tensor_to_device( | |
model, param_name, param_device, value=param | |
) | |
else: # else let accelerate handle loading and dispatching. | |
# Load weights and dispatch according to the device_map | |
# by default the device_map is None and the weights are loaded on the CPU | |
accelerate.load_checkpoint_and_dispatch( | |
model, model_file, device_map, dtype=torch_dtype | |
) | |
loading_info = { | |
"missing_keys": [], | |
"unexpected_keys": [], | |
"mismatched_keys": [], | |
"error_msgs": [], | |
} | |
else: | |
model = cls.from_config(config, **unused_kwargs) | |
state_dict = load_state_dict(model_file, variant=variant) | |
( | |
model, | |
missing_keys, | |
unexpected_keys, | |
mismatched_keys, | |
error_msgs, | |
) = cls._load_pretrained_model( | |
model, | |
state_dict, | |
model_file, | |
pretrained_model_name_or_path, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
) | |
loading_info = { | |
"missing_keys": missing_keys, | |
"unexpected_keys": unexpected_keys, | |
"mismatched_keys": mismatched_keys, | |
"error_msgs": error_msgs, | |
} | |
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
) | |
elif torch_dtype is not None: | |
model = model.to(torch_dtype) | |
model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
# Set model in evaluation mode to deactivate DropOut modules by default | |
model.eval() | |
if output_loading_info: | |
return model, loading_info | |
return model | |
def set_skip_temporal_layers( | |
self, | |
valid: bool, | |
) -> None: # turn 3Dunet to 2Dunet | |
# Recursively walk through all the children. | |
# Any children which exposes the skip_temporal_layers parameter gets the message | |
# 推断时使用参数控制refer_image和ip_adapter_image来控制,不需要这里了 | |
# if hasattr(self, "skip_refer_downblock_emb"): | |
# self.skip_refer_downblock_emb = valid | |
def fn_recursive_set_mem_eff(module: torch.nn.Module): | |
if hasattr(module, "skip_temporal_layers"): | |
module.skip_temporal_layers = valid | |
# if hasattr(module, "skip_refer_downblock_emb"): | |
# module.skip_refer_downblock_emb = valid | |
for child in module.children(): | |
fn_recursive_set_mem_eff(child) | |
for module in self.children(): | |
if isinstance(module, torch.nn.Module): | |
fn_recursive_set_mem_eff(module) | |
def insert_spatial_self_attn_idx(self): | |
attns, basic_transformers = self.spatial_self_attns | |
self.self_attn_num = len(attns) | |
for i, (name, layer) in enumerate(attns): | |
logger.debug( | |
f"{self.__class__.__name__}, {i}, {name}, {layer.__class__.__name__}" | |
) | |
layer.spatial_self_attn_idx = i | |
for i, (name, layer) in enumerate(basic_transformers): | |
logger.debug( | |
f"{self.__class__.__name__}, {i}, {name}, {layer.__class__.__name__}" | |
) | |
layer.spatial_self_attn_idx = i | |
def spatial_self_attns( | |
self, | |
) -> List[Tuple[str, Attention]]: | |
attns, spatial_transformers = self.get_attns( | |
include="attentions", exclude="temp_attentions", attn_name="attn1" | |
) | |
attns = sorted(attns) | |
spatial_transformers = sorted(spatial_transformers) | |
return attns, spatial_transformers | |
def spatial_cross_attns( | |
self, | |
) -> List[Tuple[str, Attention]]: | |
attns, spatial_transformers = self.get_attns( | |
include="attentions", exclude="temp_attentions", attn_name="attn2" | |
) | |
attns = sorted(attns) | |
spatial_transformers = sorted(spatial_transformers) | |
return attns, spatial_transformers | |
def get_attns( | |
self, | |
attn_name: str, | |
include: str = None, | |
exclude: str = None, | |
) -> List[Tuple[str, Attention]]: | |
r""" | |
Returns: | |
`dict` of attention attns: A dictionary containing all attention attns used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
attns = [] | |
spatial_transformers = [] | |
def fn_recursive_add_attns( | |
name: str, | |
module: torch.nn.Module, | |
attns: List[Tuple[str, Attention]], | |
spatial_transformers: List[Tuple[str, BasicTransformerBlock]], | |
): | |
is_target = False | |
if isinstance(module, BasicTransformerBlock) and hasattr(module, attn_name): | |
is_target = True | |
if include is not None: | |
is_target = include in name | |
if exclude is not None: | |
is_target = exclude not in name | |
if is_target: | |
attns.append([f"{name}.{attn_name}", getattr(module, attn_name)]) | |
spatial_transformers.append([f"{name}", module]) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_attns( | |
f"{name}.{sub_name}", child, attns, spatial_transformers | |
) | |
return attns | |
for name, module in self.named_children(): | |
fn_recursive_add_attns(name, module, attns, spatial_transformers) | |
return attns, spatial_transformers | |