# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import tempfile import time import unittest import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from huggingface_hub import hf_hub_download from huggingface_hub.repocard import RepoCard from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, AutoPipelineForImage2Image, ControlNetModel, DDIMScheduler, DiffusionPipeline, EulerDiscreteScheduler, LCMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetPipeline, StableDiffusionXLPipeline, UNet2DConditionModel, ) from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import LoRAAttnProcessor, LoRAAttnProcessor2_0 from diffusers.utils.import_utils import is_accelerate_available, is_peft_available from diffusers.utils.testing_utils import ( floats_tensor, load_image, nightly, require_peft_backend, require_torch_gpu, slow, torch_device, ) if is_accelerate_available(): from accelerate.utils import release_memory if is_peft_available(): from peft import LoraConfig from peft.tuners.tuners_utils import BaseTunerLayer from peft.utils import get_peft_model_state_dict def state_dicts_almost_equal(sd1, sd2): sd1 = dict(sorted(sd1.items())) sd2 = dict(sorted(sd2.items())) models_are_equal = True for ten1, ten2 in zip(sd1.values(), sd2.values()): if (ten1 - ten2).abs().max() > 1e-3: models_are_equal = False return models_are_equal def create_unet_lora_layers(unet: nn.Module): lora_attn_procs = {} for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] lora_attn_processor_class = ( LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor ) lora_attn_procs[name] = lora_attn_processor_class( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim ) unet_lora_layers = AttnProcsLayers(lora_attn_procs) return lora_attn_procs, unet_lora_layers @require_peft_backend class PeftLoraLoaderMixinTests: torch_device = "cuda" if torch.cuda.is_available() else "cpu" pipeline_class = None scheduler_cls = None scheduler_kwargs = None has_two_text_encoders = False unet_kwargs = None vae_kwargs = None def get_dummy_components(self, scheduler_cls=None): scheduler_cls = self.scheduler_cls if scheduler_cls is None else LCMScheduler torch.manual_seed(0) unet = UNet2DConditionModel(**self.unet_kwargs) scheduler = scheduler_cls(**self.scheduler_kwargs) torch.manual_seed(0) vae = AutoencoderKL(**self.vae_kwargs) text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2") tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") if self.has_two_text_encoders: text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2") tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") text_lora_config = LoraConfig( r=4, lora_alpha=4, target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], init_lora_weights=False ) unet_lora_config = LoraConfig( r=4, lora_alpha=4, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False ) unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet) if self.has_two_text_encoders: pipeline_components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "image_encoder": None, "feature_extractor": None, } else: pipeline_components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": None, } lora_components = { "unet_lora_layers": unet_lora_layers, "unet_lora_attn_procs": unet_lora_attn_procs, } return pipeline_components, lora_components, text_lora_config, unet_lora_config def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 10 num_channels = 4 sizes = (32, 32) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "A painting of a squirrel eating a burger", "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb def get_dummy_tokens(self): max_seq_length = 77 inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0)) prepared_inputs = {} prepared_inputs["input_ids"] = inputs return prepared_inputs def check_if_lora_correctly_set(self, model) -> bool: """ Checks if the LoRA layers are correctly set with peft """ for module in model.modules(): if isinstance(module, BaseTunerLayer): return True return False def test_simple_inference(self): """ Tests a simple inference and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs() output_no_lora = pipe(**inputs).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) def test_simple_inference_with_text_lora(self): """ Tests a simple inference with lora attached on the text encoder and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" ) def test_simple_inference_with_text_lora_and_scale(self): """ Tests a simple inference with lora attached on the text encoder + scale argument and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" ) output_lora_scale = pipe( **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} ).images self.assertTrue( not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), "Lora + scale should change the output", ) output_lora_0_scale = pipe( **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} ).images self.assertTrue( np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), "Lora + 0 scale should lead to same result as no LoRA", ) def test_simple_inference_with_text_lora_fused(self): """ Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.fuse_lora() # Fusing should still keep the LoRA layers self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) if self.has_two_text_encoders: self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" ) def test_simple_inference_with_text_lora_unloaded(self): """ Tests a simple inference with lora attached to text encoder, then unloads the lora weights and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.unload_lora_weights() # unloading should remove the LoRA layers self.assertFalse( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" ) if self.has_two_text_encoders: self.assertFalse( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly unloaded in text encoder 2", ) ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output", ) def test_simple_inference_with_text_lora_save_load(self): """ Tests a simple usecase where users could use saving utilities for LoRA. """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images with tempfile.TemporaryDirectory() as tmpdirname: text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) if self.has_two_text_encoders: text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) self.pipeline_class.save_lora_weights( save_directory=tmpdirname, text_encoder_lora_layers=text_encoder_state_dict, text_encoder_2_lora_layers=text_encoder_2_state_dict, safe_serialization=False, ) else: self.pipeline_class.save_lora_weights( save_directory=tmpdirname, text_encoder_lora_layers=text_encoder_state_dict, safe_serialization=False, ) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) pipe.unload_lora_weights() pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) if self.has_two_text_encoders: self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) self.assertTrue( np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), "Loading from saved checkpoints should give same results.", ) def test_simple_inference_save_pretrained(self): """ Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname) pipe_from_pretrained.to(self.torch_device) self.assertTrue( self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder), "Lora not correctly set in text encoder", ) if self.has_two_text_encoders: self.assertTrue( self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2), "Lora not correctly set in text encoder 2", ) images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3), "Loading from saved checkpoints should give same results.", ) def test_simple_inference_with_text_unet_lora_save_load(self): """ Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images with tempfile.TemporaryDirectory() as tmpdirname: text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) unet_state_dict = get_peft_model_state_dict(pipe.unet) if self.has_two_text_encoders: text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) self.pipeline_class.save_lora_weights( save_directory=tmpdirname, text_encoder_lora_layers=text_encoder_state_dict, text_encoder_2_lora_layers=text_encoder_2_state_dict, unet_lora_layers=unet_state_dict, safe_serialization=False, ) else: self.pipeline_class.save_lora_weights( save_directory=tmpdirname, text_encoder_lora_layers=text_encoder_state_dict, unet_lora_layers=unet_state_dict, safe_serialization=False, ) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) pipe.unload_lora_weights() pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) self.assertTrue( np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), "Loading from saved checkpoints should give same results.", ) def test_simple_inference_with_text_unet_lora_and_scale(self): """ Tests a simple inference with lora attached on the text encoder + Unet + scale argument and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" ) output_lora_scale = pipe( **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} ).images self.assertTrue( not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), "Lora + scale should change the output", ) output_lora_0_scale = pipe( **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} ).images self.assertTrue( np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), "Lora + 0 scale should lead to same result as no LoRA", ) self.assertTrue( pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0, "The scaling parameter has not been correctly restored!", ) def test_simple_inference_with_text_lora_unet_fused(self): """ Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model and makes sure it works as expected - with unet """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.fuse_lora() # Fusing should still keep the LoRA layers self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet") if self.has_two_text_encoders: self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" ) def test_simple_inference_with_text_unet_lora_unloaded(self): """ Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.unload_lora_weights() # unloading should remove the LoRA layers self.assertFalse( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" ) self.assertFalse(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet") if self.has_two_text_encoders: self.assertFalse( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly unloaded in text encoder 2", ) ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output", ) def test_simple_inference_with_text_unet_lora_unfused(self): """ Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.fuse_lora() output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.unfuse_lora() output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images # unloading should remove the LoRA layers self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers") if self.has_two_text_encoders: self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers" ) # Fuse and unfuse should lead to the same results self.assertTrue( np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output", ) def test_simple_inference_with_text_unet_multi_adapter(self): """ Tests a simple inference with lora attached to text encoder and unet, attaches multiple adapters and set them """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.set_adapters("adapter-1") output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters("adapter-2") output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters(["adapter-1", "adapter-2"]) output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images # Fuse and unfuse should lead to the same results self.assertFalse( np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) self.assertFalse( np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 1 and mixed adapters should give different results", ) self.assertFalse( np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 2 and mixed adapters should give different results", ) pipe.disable_lora() output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self): """ Tests a simple inference with lora attached to text encoder and unet, attaches multiple adapters and set/delete them """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.set_adapters("adapter-1") output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters("adapter-2") output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters(["adapter-1", "adapter-2"]) output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) self.assertFalse( np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 1 and mixed adapters should give different results", ) self.assertFalse( np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 2 and mixed adapters should give different results", ) pipe.delete_adapters("adapter-1") output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) pipe.delete_adapters("adapter-2") output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") pipe.set_adapters(["adapter-1", "adapter-2"]) pipe.delete_adapters(["adapter-1", "adapter-2"]) output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) def test_simple_inference_with_text_unet_multi_adapter_weighted(self): """ Tests a simple inference with lora attached to text encoder and unet, attaches multiple adapters and set them """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.set_adapters("adapter-1") output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters("adapter-2") output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters(["adapter-1", "adapter-2"]) output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images # Fuse and unfuse should lead to the same results self.assertFalse( np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) self.assertFalse( np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 1 and mixed adapters should give different results", ) self.assertFalse( np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 2 and mixed adapters should give different results", ) pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6]) output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Weighted adapter and mixed adapter should give different results", ) pipe.disable_lora() output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) def test_lora_fuse_nan(self): for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") # corrupt one LoRA weight with `inf` values with torch.no_grad(): pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float( "inf" ) # with `safe_fusing=True` we should see an Error with self.assertRaises(ValueError): pipe.fuse_lora(safe_fusing=True) # without we should not see an error, but every image will be black pipe.fuse_lora(safe_fusing=False) out = pipe("test", num_inference_steps=2, output_type="np").images self.assertTrue(np.isnan(out).all()) def test_get_adapters(self): """ Tests a simple usecase where we attach multiple adapters and check if the results are the expected results """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") adapter_names = pipe.get_active_adapters() self.assertListEqual(adapter_names, ["adapter-1"]) pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-2") adapter_names = pipe.get_active_adapters() self.assertListEqual(adapter_names, ["adapter-2"]) pipe.set_adapters(["adapter-1", "adapter-2"]) self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"]) def test_get_list_adapters(self): """ Tests a simple usecase where we attach multiple adapters and check if the results are the expected results """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") adapter_names = pipe.get_list_adapters() self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]}) pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-2") adapter_names = pipe.get_list_adapters() self.assertDictEqual( adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]} ) pipe.set_adapters(["adapter-1", "adapter-2"]) self.assertDictEqual( pipe.get_list_adapters(), {"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]}, ) pipe.unet.add_adapter(unet_lora_config, "adapter-3") self.assertDictEqual( pipe.get_list_adapters(), {"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]}, ) @unittest.skip("This is failing for now - need to investigate") def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self): """ Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(self.torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" ) self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True) if self.has_two_text_encoders: pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True) # Just makes sure it works.. _ = pipe(**inputs, generator=torch.manual_seed(0)).images class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): pipeline_class = StableDiffusionPipeline scheduler_cls = DDIMScheduler scheduler_kwargs = { "beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear", "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 1, } unet_kwargs = { "block_out_channels": (32, 64), "layers_per_block": 2, "sample_size": 32, "in_channels": 4, "out_channels": 4, "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), "cross_attention_dim": 32, } vae_kwargs = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } @slow @require_torch_gpu def test_integration_move_lora_cpu(self): path = "runwayml/stable-diffusion-v1-5" lora_id = "takuma104/lora-test-text-encoder-lora-target" pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.load_lora_weights(lora_id, adapter_name="adapter-1") pipe.load_lora_weights(lora_id, adapter_name="adapter-2") pipe = pipe.to("cuda") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder", ) self.assertTrue( self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in text encoder", ) # We will offload the first adapter in CPU and check if the offloading # has been performed correctly pipe.set_lora_device(["adapter-1"], "cpu") for name, module in pipe.unet.named_modules(): if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)): self.assertTrue(module.weight.device == torch.device("cpu")) elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)): self.assertTrue(module.weight.device != torch.device("cpu")) for name, module in pipe.text_encoder.named_modules(): if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)): self.assertTrue(module.weight.device == torch.device("cpu")) elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)): self.assertTrue(module.weight.device != torch.device("cpu")) pipe.set_lora_device(["adapter-1"], 0) for n, m in pipe.unet.named_modules(): if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)): self.assertTrue(m.weight.device != torch.device("cpu")) for n, m in pipe.text_encoder.named_modules(): if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)): self.assertTrue(m.weight.device != torch.device("cpu")) pipe.set_lora_device(["adapter-1", "adapter-2"], "cuda") for n, m in pipe.unet.named_modules(): if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)): self.assertTrue(m.weight.device != torch.device("cpu")) for n, m in pipe.text_encoder.named_modules(): if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)): self.assertTrue(m.weight.device != torch.device("cpu")) @slow @require_torch_gpu def test_integration_logits_with_scale(self): path = "runwayml/stable-diffusion-v1-5" lora_id = "takuma104/lora-test-text-encoder-lora-target" pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) pipe.load_lora_weights(lora_id) pipe = pipe.to("cuda") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder 2", ) prompt = "a red sks dog" images = pipe( prompt=prompt, num_inference_steps=15, cross_attention_kwargs={"scale": 0.5}, generator=torch.manual_seed(0), output_type="np", ).images expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321]) predicted_slice = images[0, -3:, -3:, -1].flatten() self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) @slow @require_torch_gpu def test_integration_logits_no_scale(self): path = "runwayml/stable-diffusion-v1-5" lora_id = "takuma104/lora-test-text-encoder-lora-target" pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) pipe.load_lora_weights(lora_id) pipe = pipe.to("cuda") self.assertTrue( self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder", ) prompt = "a red sks dog" images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084]) predicted_slice = images[0, -3:, -3:, -1].flatten() self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) @nightly @require_torch_gpu def test_integration_logits_multi_adapter(self): path = "stabilityai/stable-diffusion-xl-base-1.0" lora_id = "CiroN2022/toy-face" pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy") pipe = pipe.to("cuda") self.assertTrue( self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet", ) prompt = "toy_face of a hacker with a hoodie" lora_scale = 0.9 images = pipe( prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": lora_scale}, output_type="np", ).images expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539]) predicted_slice = images[0, -3:, -3:, -1].flatten() self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipe.set_adapters("pixel") prompt = "pixel art, a hacker with a hoodie, simple, flat colors" images = pipe( prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0), output_type="np", ).images predicted_slice = images[0, -3:, -3:, -1].flatten() expected_slice_scale = np.array( [0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889] ) self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) # multi-adapter inference pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0]) images = pipe( prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={"scale": 1.0}, generator=torch.manual_seed(0), output_type="np", ).images predicted_slice = images[0, -3:, -3:, -1].flatten() expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909]) self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) # Lora disabled pipe.disable_lora() images = pipe( prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0), output_type="np", ).images predicted_slice = images[0, -3:, -3:, -1].flatten() expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487]) self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): has_two_text_encoders = True pipeline_class = StableDiffusionXLPipeline scheduler_cls = EulerDiscreteScheduler scheduler_kwargs = { "beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear", "timestep_spacing": "leading", "steps_offset": 1, } unet_kwargs = { "block_out_channels": (32, 64), "layers_per_block": 2, "sample_size": 32, "in_channels": 4, "out_channels": 4, "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), "attention_head_dim": (2, 4), "use_linear_projection": True, "addition_embed_type": "text_time", "addition_time_embed_dim": 8, "transformer_layers_per_block": (1, 2), "projection_class_embeddings_input_dim": 80, # 6 * 8 + 32 "cross_attention_dim": 64, } vae_kwargs = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, "sample_size": 128, } @slow @require_torch_gpu class LoraIntegrationTests(unittest.TestCase): def tearDown(self): import gc gc.collect() torch.cuda.empty_cache() gc.collect() def test_dreambooth_old_format(self): generator = torch.Generator("cpu").manual_seed(0) lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example" card = RepoCard.load(lora_model_id) base_model_id = card.data.to_dict()["base_model"] pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = pipe.to(torch_device) pipe.load_lora_weights(lora_model_id) images = pipe( "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785]) self.assertTrue(np.allclose(images, expected, atol=1e-4)) release_memory(pipe) def test_dreambooth_text_encoder_new_format(self): generator = torch.Generator().manual_seed(0) lora_model_id = "hf-internal-testing/lora-trained" card = RepoCard.load(lora_model_id) base_model_id = card.data.to_dict()["base_model"] pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = pipe.to(torch_device) pipe.load_lora_weights(lora_model_id) images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359]) self.assertTrue(np.allclose(images, expected, atol=1e-4)) release_memory(pipe) def test_a1111(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to( torch_device ) lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" lora_filename = "light_and_shadow.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_lycoris(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16" ).to(torch_device) lora_model_id = "hf-internal-testing/edgLycorisMugler-light" lora_filename = "edgLycorisMugler-light.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_a1111_with_model_cpu_offload(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None) pipe.enable_model_cpu_offload() lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" lora_filename = "light_and_shadow.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_a1111_with_sequential_cpu_offload(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None) pipe.enable_sequential_cpu_offload() lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" lora_filename = "light_and_shadow.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_kohya_sd_v15_with_higher_dimensions(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( torch_device ) lora_model_id = "hf-internal-testing/urushisato-lora" lora_filename = "urushisato_v15.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_vanilla_funetuning(self): generator = torch.Generator().manual_seed(0) lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4" card = RepoCard.load(lora_model_id) base_model_id = card.data.to_dict()["base_model"] pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = pipe.to(torch_device) pipe.load_lora_weights(lora_model_id) images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583]) self.assertTrue(np.allclose(images, expected, atol=1e-4)) release_memory(pipe) def test_unload_kohya_lora(self): generator = torch.manual_seed(0) prompt = "masterpiece, best quality, mountain" num_inference_steps = 2 pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( torch_device ) initial_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images initial_images = initial_images[0, -3:, -3:, -1].flatten() lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" lora_filename = "Colored_Icons_by_vizsumit.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) generator = torch.manual_seed(0) lora_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images lora_images = lora_images[0, -3:, -3:, -1].flatten() pipe.unload_lora_weights() generator = torch.manual_seed(0) unloaded_lora_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() self.assertFalse(np.allclose(initial_images, lora_images)) self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) release_memory(pipe) def test_load_unload_load_kohya_lora(self): # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded # without introducing any side-effects. Even though the test uses a Kohya-style # LoRA, the underlying adapter handling mechanism is format-agnostic. generator = torch.manual_seed(0) prompt = "masterpiece, best quality, mountain" num_inference_steps = 2 pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( torch_device ) initial_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images initial_images = initial_images[0, -3:, -3:, -1].flatten() lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" lora_filename = "Colored_Icons_by_vizsumit.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) generator = torch.manual_seed(0) lora_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images lora_images = lora_images[0, -3:, -3:, -1].flatten() pipe.unload_lora_weights() generator = torch.manual_seed(0) unloaded_lora_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() self.assertFalse(np.allclose(initial_images, lora_images)) self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) # make sure we can load a LoRA again after unloading and they don't have # any undesired effects. pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) generator = torch.manual_seed(0) lora_images_again = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten() self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3)) release_memory(pipe) @slow @require_torch_gpu class LoraSDXLIntegrationTests(unittest.TestCase): def tearDown(self): import gc gc.collect() torch.cuda.empty_cache() gc.collect() def test_sdxl_0_9_lora_one(self): generator = torch.Generator().manual_seed(0) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora" lora_filename = "daiton-xl-lora-test.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_sdxl_0_9_lora_two(self): generator = torch.Generator().manual_seed(0) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora" lora_filename = "saijo.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_sdxl_0_9_lora_three(self): generator = torch.Generator().manual_seed(0) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora" lora_filename = "kame_sdxl_v2-000020-16rank.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468]) self.assertTrue(np.allclose(images, expected, atol=5e-3)) release_memory(pipe) def test_sdxl_1_0_lora(self): generator = torch.Generator().manual_seed(0) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_model_cpu_offload() lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) self.assertTrue(np.allclose(images, expected, atol=1e-4)) release_memory(pipe) def test_sdxl_lcm_lora(self): pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.Generator().manual_seed(0) lora_model_id = "latent-consistency/lcm-lora-sdxl" pipe.load_lora_weights(lora_model_id) image = pipe( "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 ).images[0] expected_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png" ) image_np = pipe.image_processor.pil_to_numpy(image) expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) self.assertTrue(np.allclose(image_np, expected_image_np, atol=1e-2)) pipe.unload_lora_weights() release_memory(pipe) def test_sdv1_5_lcm_lora(self): pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe.to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) generator = torch.Generator().manual_seed(0) lora_model_id = "latent-consistency/lcm-lora-sdv1-5" pipe.load_lora_weights(lora_model_id) image = pipe( "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 ).images[0] expected_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png" ) image_np = pipe.image_processor.pil_to_numpy(image) expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) self.assertTrue(np.allclose(image_np, expected_image_np, atol=1e-2)) pipe.unload_lora_weights() release_memory(pipe) def test_sdv1_5_lcm_lora_img2img(self): pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe.to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png" ) generator = torch.Generator().manual_seed(0) lora_model_id = "latent-consistency/lcm-lora-sdv1-5" pipe.load_lora_weights(lora_model_id) image = pipe( "snowy mountain", generator=generator, image=init_image, strength=0.5, num_inference_steps=4, guidance_scale=0.5, ).images[0] expected_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png" ) image_np = pipe.image_processor.pil_to_numpy(image) expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) self.assertTrue(np.allclose(image_np, expected_image_np, atol=1e-2)) pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_1_0_lora_fusion(self): generator = torch.Generator().manual_seed(0) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.fuse_lora() # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being # silently deleted - otherwise this will CPU OOM pipe.unload_lora_weights() pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() # This way we also test equivalence between LoRA fusion and the non-fusion behaviour. expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) self.assertTrue(np.allclose(images, expected, atol=1e-4)) release_memory(pipe) def test_sdxl_1_0_lora_unfusion(self): generator = torch.Generator().manual_seed(0) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.fuse_lora() pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images_with_fusion = images[0, -3:, -3:, -1].flatten() pipe.unfuse_lora() generator = torch.Generator().manual_seed(0) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images_without_fusion = images[0, -3:, -3:, -1].flatten() self.assertTrue(np.allclose(images_with_fusion, images_without_fusion, atol=1e-3)) release_memory(pipe) def test_sdxl_1_0_lora_unfusion_effectivity(self): pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_model_cpu_offload() generator = torch.Generator().manual_seed(0) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images original_image_slice = images[0, -3:, -3:, -1].flatten() lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.fuse_lora() generator = torch.Generator().manual_seed(0) _ = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images pipe.unfuse_lora() # We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights pipe.unload_lora_weights() generator = torch.Generator().manual_seed(0) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images_without_fusion_slice = images[0, -3:, -3:, -1].flatten() self.assertTrue(np.allclose(original_image_slice, images_without_fusion_slice, atol=1e-3)) release_memory(pipe) def test_sdxl_1_0_lora_fusion_efficiency(self): generator = torch.Generator().manual_seed(0) lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16 ) pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.bfloat16) pipe.enable_model_cpu_offload() start_time = time.time() for _ in range(3): pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images end_time = time.time() elapsed_time_non_fusion = end_time - start_time del pipe pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16 ) pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.bfloat16) pipe.fuse_lora() # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being # silently deleted - otherwise this will CPU OOM pipe.unload_lora_weights() pipe.enable_model_cpu_offload() start_time = time.time() generator = torch.Generator().manual_seed(0) for _ in range(3): pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images end_time = time.time() elapsed_time_fusion = end_time - start_time self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion) release_memory(pipe) def test_sdxl_1_0_last_ben(self): generator = torch.Generator().manual_seed(0) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_model_cpu_offload() lora_model_id = "TheLastBen/Papercut_SDXL" lora_filename = "papercut.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_sdxl_1_0_fuse_unfuse_all(self): pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict()) text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict()) unet_sd = copy.deepcopy(pipe.unet.state_dict()) pipe.load_lora_weights( "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16 ) fused_te_state_dict = pipe.text_encoder.state_dict() fused_te_2_state_dict = pipe.text_encoder_2.state_dict() unet_state_dict = pipe.unet.state_dict() for key, value in text_encoder_1_sd.items(): self.assertTrue(torch.allclose(fused_te_state_dict[key], value)) for key, value in text_encoder_2_sd.items(): self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value)) for key, value in unet_state_dict.items(): self.assertTrue(torch.allclose(unet_state_dict[key], value)) pipe.fuse_lora() pipe.unload_lora_weights() assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict()) assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict()) assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict()) release_memory(pipe) del unet_sd, text_encoder_1_sd, text_encoder_2_sd def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self): generator = torch.Generator().manual_seed(0) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_sequential_cpu_offload() lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipe) def test_sd_load_civitai_empty_network_alpha(self): """ This test simply checks that loading a LoRA with an empty network alpha works fine See: https://github.com/huggingface/diffusers/issues/5606 """ pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda") pipeline.enable_sequential_cpu_offload() civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors") pipeline.load_lora_weights(civitai_path, adapter_name="ahri") images = pipeline( "ahri, masterpiece, league of legends", output_type="np", generator=torch.manual_seed(156), num_inference_steps=5, ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995]) self.assertTrue(np.allclose(images, expected, atol=1e-3)) release_memory(pipeline) def test_canny_lora(self): controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet ) pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors") pipe.enable_sequential_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) prompt = "corgi" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images assert images[0].shape == (768, 512, 3) original_image = images[0, -3:, -3:, -1].flatten() expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333]) assert np.allclose(original_image, expected_image, atol=1e-04) release_memory(pipe) @nightly def test_sequential_fuse_unfuse(self): pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) # 1. round pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) pipe.to("cuda") pipe.fuse_lora() generator = torch.Generator().manual_seed(0) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images image_slice = images[0, -3:, -3:, -1].flatten() pipe.unfuse_lora() # 2. round pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16) pipe.fuse_lora() pipe.unfuse_lora() # 3. round pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16) pipe.fuse_lora() pipe.unfuse_lora() # 4. back to 1st round pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) pipe.fuse_lora() generator = torch.Generator().manual_seed(0) images_2 = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images image_slice_2 = images_2[0, -3:, -3:, -1].flatten() self.assertTrue(np.allclose(image_slice, image_slice_2, atol=1e-3)) release_memory(pipe)