# Control image brightness The Stable Diffusion pipeline is mediocre at generating images that are either very bright or dark as explained in the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) paper. The solutions proposed in the paper are currently implemented in the [`DDIMScheduler`] which you can use to improve the lighting in your images. 💡 Take a look at the paper linked above for more details about the proposed solutions! One of the solutions is to train a model with *v prediction* and *v loss*. Add the following flag to the [`train_text_to_image.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [`train_text_to_image_lora.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts to enable `v_prediction`: ```bash --prediction_type="v_prediction" ``` For example, let's use the [`ptx0/pseudo-journey-v2`](https://huggingface.co/ptx0/pseudo-journey-v2) checkpoint which has been finetuned with `v_prediction`. Next, configure the following parameters in the [`DDIMScheduler`]: 1. `rescale_betas_zero_snr=True`, rescales the noise schedule to zero terminal signal-to-noise ratio (SNR) 2. `timestep_spacing="trailing"`, starts sampling from the last timestep ```py from diffusers import DiffusionPipeline, DDIMScheduler pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True) # switch the scheduler in the pipeline to use the DDIMScheduler pipeline.scheduler = DDIMScheduler.from_config( pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing" ) pipeline.to("cuda") ``` Finally, in your call to the pipeline, set `guidance_rescale` to prevent overexposure: ```py prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k" image = pipeline(prompt, guidance_rescale=0.7).images[0] image ```