# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import DDPMWuerstchenScheduler, WuerstchenDecoderPipeline from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class WuerstchenDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = WuerstchenDecoderPipeline params = ["prompt"] batch_params = ["image_embeddings", "prompt", "negative_prompt"] required_optional_params = [ "num_images_per_prompt", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] test_xformers_attention = False callback_cfg_params = ["image_embeddings", "text_encoder_hidden_states"] @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, projection_dim=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config).eval() @property def dummy_vqgan(self): torch.manual_seed(0) model_kwargs = { "bottleneck_blocks": 1, "num_vq_embeddings": 2, } model = PaellaVQModel(**model_kwargs) return model.eval() @property def dummy_decoder(self): torch.manual_seed(0) model_kwargs = { "c_cond": self.text_embedder_hidden_size, "c_hidden": [320], "nhead": [-1], "blocks": [4], "level_config": ["CT"], "clip_embd": self.text_embedder_hidden_size, "inject_effnet": [False], } model = WuerstchenDiffNeXt(**model_kwargs) return model.eval() def get_dummy_components(self): decoder = self.dummy_decoder text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer vqgan = self.dummy_vqgan scheduler = DDPMWuerstchenScheduler() components = { "decoder": decoder, "vqgan": vqgan, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "latent_dim_scale": 4.0, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image_embeddings": torch.ones((1, 4, 4, 4), device=device), "prompt": "horse", "generator": generator, "guidance_scale": 1.0, "num_inference_steps": 2, "output_type": "np", } return inputs def test_wuerstchen_decoder(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False) image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.0000, 0.0000, 0.0089, 1.0000, 1.0000, 0.3927, 1.0000, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=1e-5) @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" test_mean_pixel_difference = False self._test_attention_slicing_forward_pass( test_max_difference=test_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, ) @unittest.skip(reason="bf16 not supported and requires CUDA") def test_float16_inference(self): super().test_float16_inference()