NeuCoSVC-Colab / start.py
kevinwang676's picture
Upload folder using huggingface_hub
cfdc687
import argparse
import logging
import os
import sys
import json
import random
import numpy as np
import torch
from torch.utils.data import DataLoader
from utils.tools import ConfigWrapper
from dataset.dataset import SVCDataset
from modules.FastSVC import SVCNN
from modules.discriminator import MelGANMultiScaleDiscriminator
from optimizers.scheduler import StepLRScheduler
from loss.adversarial_loss import GeneratorAdversarialLoss
from loss.adversarial_loss import DiscriminatorAdversarialLoss
from loss.stft_loss import MultiResolutionSTFTLoss
from trainer import Trainer
def main():
"""Run training process."""
parser = argparse.ArgumentParser(
description="Train the FastSVC model."
)
parser.add_argument(
"--data_root",
type=str,
required=True,
help="dataset root path.",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="configuration file path.",
)
parser.add_argument(
"--cp_path",
required=True,
type=str,
nargs="?",
help='checkpoint file path.',
)
parser.add_argument(
"--pretrain",
default="",
type=str,
nargs="?",
help='checkpoint file path to load pretrained params. (default="")',
)
parser.add_argument(
"--resume",
default=False,
type=bool,
nargs="?",
help='whether to resume training from a certain checkpoint.',
)
parser.add_argument(
"--seed",
default=0,
type=int,
help="random seed.",
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
args = parser.parse_args()
local_rank = 0
args.distributed = False
if not torch.cuda.is_available():
device = torch.device("cpu")
else:
device = torch.device("cuda")
# effective when using fixed size inputs
# see https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936
torch.backends.cudnn.benchmark = True
# setup for distributed training
# see example: https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed
args.world_size = torch.cuda.device_count()
args.distributed = args.world_size > 1
if args.distributed:
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
print('Using multi-GPUs for training. n_GPU=%d.' %(args.world_size))
torch.distributed.init_process_group(backend="nccl")
# random seed
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
# suppress logging for distributed training
if local_rank != 0:
sys.stdout = open(os.devnull, "w")
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# load and save config
with open(args.config) as f:
config = ConfigWrapper(**json.load(f))
config.training_config.rank = local_rank
config.training_config.distributed = args.distributed
config.interval_config.out_dir = args.cp_path
# get dataset
train_set = SVCDataset(args.data_root, config.data_config.n_samples, config.data_config.sampling_rate, config.data_config.hop_size, 'train')
valid_set = SVCDataset(args.data_root, config.data_config.n_samples, config.data_config.sampling_rate, config.data_config.hop_size, 'valid')
dataset = {
"train": train_set,
"dev": valid_set,
}
# get data loader
sampler = {"train": None, "dev": None}
if args.distributed:
# setup sampler for distributed training
from torch.utils.data.distributed import DistributedSampler
sampler["train"] = DistributedSampler(
dataset=dataset["train"],
num_replicas=args.world_size,
rank=local_rank,
shuffle=True,
)
data_loader = {
"train": DataLoader(
dataset=dataset["train"],
shuffle=False if args.distributed else True,
batch_size=config.data_config.batch_size,
num_workers=config.data_config.num_workers,
sampler=sampler["train"],
pin_memory=config.data_config.pin_memory,
drop_last=True,
),
"dev": DataLoader(
dataset=dataset["dev"],
shuffle=False,
batch_size=config.data_config.batch_size,
num_workers=config.data_config.num_workers,
sampler=sampler["dev"],
pin_memory=config.data_config.pin_memory,
),
}
# define models
svc_mdl = SVCNN(config).to(device)
discriminator = MelGANMultiScaleDiscriminator().to(device)
model = {
"generator": svc_mdl,
"discriminator": discriminator,
}
# define criterions
criterion = {
"gen_adv": GeneratorAdversarialLoss(
# keep compatibility
**config.loss_config.generator_adv_loss_params
).to(device),
"dis_adv": DiscriminatorAdversarialLoss(
# keep compatibility
**config.loss_config.discriminator_adv_loss_params
).to(device),
}
criterion["stft"] = MultiResolutionSTFTLoss(
**config.loss_config.stft,
).to(device)
# define optimizers and schedulers
optimizer = {
"generator": torch.optim.Adam(model["generator"].parameters(), lr=config.optimizer_config.lr),
"discriminator": torch.optim.Adam(model["discriminator"].parameters(), lr=config.optimizer_config.lr),
}
scheduler = {
"generator": StepLRScheduler(optimizer["generator"], step_size=config.optimizer_config.scheduler_step_size, gamma=config.optimizer_config.scheduler_gamma),
"discriminator": StepLRScheduler(optimizer["discriminator"], step_size=config.optimizer_config.scheduler_step_size, gamma=config.optimizer_config.scheduler_gamma),
}
if args.distributed:
from torch.nn.parallel import DistributedDataParallel
model["generator"] = DistributedDataParallel(model["generator"])
model["discriminator"] = DistributedDataParallel(model["discriminator"])
# define trainer
trainer = Trainer(
steps=0,
epochs=0,
data_loader=data_loader,
sampler=sampler,
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
config=config,
device=device,
)
# load pretrained parameters from checkpoint
if args.resume:
if args.pretrain != "":
trainer.load_checkpoint(args.pretrain, load_only_params=False, dst_train=args.distributed)
logging.info(f"Successfully load parameters from {args.pretrain}.")
else:
if os.path.isdir(args.cp_path):
dir_files = os.listdir(args.cp_path)
cp_files = [fname for fname in dir_files if fname[:11] == 'checkpoint-']
if len(cp_files) == 0:
logging.info(f'No pretrained checkpoints. Training from scratch...')
else:
cp_files.sort(key=lambda fname: os.path.getmtime(f'{args.cp_path}/{fname}'))
latest_cp = f'{args.cp_path}/{cp_files[-1]}'
trainer.load_checkpoint(latest_cp, load_only_params=False, dst_train=args.distributed)
logging.info(f'No pretrain dir specified, use the latest one instead. Successfully load parameters from {latest_cp}.')
else:
logging.info(f'No pretrain dir specified. Training from scratch...')
# run training loop
try:
trainer.run()
finally:
trainer.save_checkpoint(
os.path.join(config.interval_config.out_dir, f"checkpoint-{trainer.steps}steps.pkl"), args.distributed
)
logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")
if __name__ == "__main__":
main()