kevinwang676's picture
Update app.py
2636400
raw
history blame
4.51 kB
import gradio as gr
import os
import tempfile
from openai import OpenAI
# Set an environment variable for key
#os.environ['OPENAI_API_KEY'] = os.environ.get('OPENAI_API_KEY')
#client = OpenAI() # add api_key
import torch
import torchaudio
import gradio as gr
from scipy.io import wavfile
from scipy.io.wavfile import write
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
)
knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=True, pretrained=True, device='cpu')
def voice_change(audio_in, audio_ref):
samplerate1, data1 = wavfile.read(audio_in)
samplerate2, data2 = wavfile.read(audio_ref)
write("./audio_in.wav", samplerate1, data1)
write("./audio_ref.wav", samplerate2, data2)
query_seq = knn_vc.get_features("./audio_in.wav")
matching_set = knn_vc.get_matching_set(["./audio_ref.wav"])
out_wav = knn_vc.match(query_seq, matching_set, topk=4)
torchaudio.save('output.wav', out_wav[None], 16000)
noisy = enhance_model.load_audio(
'output.wav'
).unsqueeze(0)
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
torchaudio.save('enhanced.wav', enhanced.cpu(), 16000)
return 'enhanced.wav'
def tts(text, model, voice, api_key):
if api_key == '':
raise gr.Error('Please enter your OpenAI API Key')
else:
try:
client = OpenAI(api_key=api_key)
response = client.audio.speech.create(
model=model, # "tts-1","tts-1-hd"
voice=voice, # 'alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer'
input=text,
)
except Exception as error:
# Handle any exception that occurs
raise gr.Error("An error occurred while generating speech. Please check your API key and try again.")
print(str(error))
# Create a temp file to save the audio
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_file.write(response.content)
# Get the file path of the temp file
temp_file_path = temp_file.name
return temp_file_path
app = gr.Blocks()
with app:
gr.Markdown("# <center>🌟 - OpenAI TTS + AI变声</center>")
gr.Markdown("### <center>🎶 地表最强文本转语音模型 + 3秒实时AI变声,支持中文!Powered by [OpenAI TTS](https://platform.openai.com/docs/guides/text-to-speech) and [KNN-VC](https://github.com/bshall/knn-vc) </center>")
gr.Markdown("### <center>🌊 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
with gr.Row(variant='panel'):
api_key = gr.Textbox(type='password', label='OpenAI API Key', placeholder='请在此填写您的OpenAI API Key')
model = gr.Dropdown(choices=['tts-1','tts-1-hd'], label='请选择模型(tts-1推理更快,tts-1-hd音质更好)', value='tts-1')
voice = gr.Dropdown(choices=['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer'], label='请选择一个说话人', value='alloy')
with gr.Row():
with gr.Column():
inp_text = gr.Textbox(label="请填写您想生成的文本(中英文皆可)", placeholder="想说却还没说的 还很多 攒着是因为想写成歌", lines=5)
btn_text = gr.Button("一键开启真实拟声吧", variant="primary")
with gr.Column():
inp1 = gr.Audio(type="filepath", label="OpenAI TTS真实拟声", interactive=False)
inp2 = gr.Audio(type="filepath", label="请上传AI变声的参照音频(决定变声后的语音音色)")
btn1 = gr.Button("一键开启AI变声吧", variant="primary")
with gr.Column():
out1 = gr.Audio(type="filepath", label="AI变声后的专属音频")
btn_text.click(tts, [inp_text, model, voice, api_key], inp1)
btn1.click(voice_change, [inp1, inp2], out1)
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。Get your OpenAI API Key [here](https://platform.openai.com/api-keys).</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
app.launch(show_error=True)