import nest_asyncio import gradio as gr import tiktoken from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import LLMRerank import logging import sys from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.legacy.llms.huggingface import HuggingFaceInferenceAPI, HuggingFaceLLM from llama_index.core import Settings from llama_index.llms.huggingface import HuggingFaceLLM import torch from transformers import BitsAndBytesConfig from llama_index.core.prompts import PromptTemplate from llama_index.llms.openai import OpenAI import os import pandas as pd from llama_index.core import Document from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core import QueryBundle import time from huggingface_hub import login from gradio import ChatMessage nest_asyncio.apply() hf_token = os.getenv('hf_token') # Replace 'your_token_here' with your actual Hugging Face API token login(token=hf_token) # quantize to save memory quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) llm = HuggingFaceLLM( model_name="kheopss/kheops_hermes-202k-e3-v0.14-bnb-16bit", tokenizer_name="kheopss/kheops_hermes-202k-e3-v0.14-bnb-16bit", context_window=3900, max_new_tokens=2560, model_kwargs={"quantization_config": quantization_config}, generate_kwargs={"temperature": 0.01, "top_k": 0.95, "top_p": 0.95}, device_map="cuda:0", ) embed_model = HuggingFaceEmbedding( model_name="jinaai/jina-embeddings-v3", ) Settings.llm=llm Settings.embed_model=embed_model # Replace 'file_path.json' with the path to your JSON file file_path = 'response_metropo_cleaned.json' data = pd.read_json(file_path) documents = [Document(text=row['values'],metadata={"filename": row['file_name'], "description":row['file_description']},) for index, row in data.iterrows()] index = VectorStoreIndex.from_documents(documents, show_progress=True) def get_retrieved_nodes( query_str, vector_top_k=10, reranker_top_n=3, with_reranker=False ): query_bundle = QueryBundle(query_str) # configure retriever phase_01_start = time.time() retriever = VectorIndexRetriever( index=index, similarity_top_k=vector_top_k, ) retrieved_nodes = retriever.retrieve(query_bundle) phase_01_end = time.time() print(f"Phase 01 took : {phase_01_end-phase_01_start}") phase_02_start = time.time() if with_reranker: # configure reranker reranker = LLMRerank( choice_batch_size=5, top_n=reranker_top_n, ) retrieved_nodes = reranker.postprocess_nodes( retrieved_nodes, query_bundle ) phase_02_end = time.time() print(f"Phase 02 took : {phase_02_end-phase_02_start}") return retrieved_nodes def get_all_text(new_nodes): texts = [] for i, node in enumerate(new_nodes, 1): texts.append(f"\nDocument {i} : {node.get_text()}") return ' '.join(texts) # Charger le tokenizer cl100k_base encoding = tiktoken.get_encoding("cl100k_base") def estimate_tokens(text): # Encoder le texte pour obtenir les tokens tokens = encoding.encode(text) return len(tokens) def process_final(user_prom,history): import time all_process_start = time.time() system_p = ''' You are a conversational AI assistant tasked with helping public agents in Nice guide residents and citizens to appropriate services. Your role is to respond to user queries using only the information provided in the documents. You are not allowed to invent or infer information beyond what is given in the documents. Always respond in French, ensuring that your answers are clear, concise, and grounded in the document content. Make sure to provide helpful and accurate responses based solely on the documents provided, while engaging in conversation to assist based on user questions.''' new_nodes = get_retrieved_nodes( user_prom, vector_top_k=5, reranker_top_n=3, with_reranker=True, ) get_texts = get_all_text(new_nodes) print("PHASE 03 passing to LLM\n") sys_p = f"<|im_start|>system \n{system_p}\n DOCUMENTS {get_texts}\n<|im_end|>" prompt_f="" total_tokens = estimate_tokens(prompt_f) for val in reversed(history): if val[0]: user_p = f" <|im_start|>user \n {val[0]}\n<|im_end|>" if val[1]: assistant_p = f" <|im_start|>assistant \n {val[1]}\n<|im_end|>" current_tokens = estimate_tokens(user_p+assistant_p) # Vérifier si l'ajout de cet historique dépasse la limite if total_tokens + current_tokens > 3000: break # Arrêter l'ajout si on dépasse la limite else: # Ajouter à `prompt_f` et mettre à jour le nombre total de tokens prompt_f = user_p + assistant_p + prompt_f total_tokens += current_tokens prompt_f=f"{sys_p} {prompt_f} <|im_start|>user \n{user_prom} \n<|im_end|><|im_start|>assistant \n" phase_03_start = time.time() gen =llm.stream_complete(formatted=True, prompt=prompt_f) print (f"le nombre TOTAL de tokens : {total_tokens}\n") print("_"*100) print(prompt_f) print("o"*100) for response in gen: yield response.text description = """

rick

Made by KHEOPS AI

""" demo = gr.ChatInterface( fn=process_final, title="METROPOLE CHATBOT", description=description, ) demo.launch(share=True, debug =True)