Spaces:
Runtime error
Runtime error
classifier demo
Browse files- .gitignore +134 -0
- README.md +4 -4
- app.py +121 -0
- requirements.txt +6 -0
.gitignore
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
130 |
+
|
131 |
+
data
|
132 |
+
artifacts/
|
133 |
+
wandb/
|
134 |
+
results
|
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
app_file: app.py
|
8 |
-
pinned:
|
9 |
---
|
10 |
|
11 |
# Configuration
|
|
|
1 |
---
|
2 |
+
title: Unreliable News Classifier
|
3 |
+
emoji: 📰
|
4 |
+
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
app_file: app.py
|
8 |
+
pinned: true
|
9 |
---
|
10 |
|
11 |
# Configuration
|
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
10 |
+
|
11 |
+
@st.cache(allow_output_mutation=True)
|
12 |
+
def init_model():
|
13 |
+
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')
|
14 |
+
model = DistilBertForSequenceClassification.from_pretrained('khizon/distilbert-unreliable-news-eng-4L', num_labels = 2)
|
15 |
+
|
16 |
+
return tokenizer, model
|
17 |
+
|
18 |
+
def download_dataset():
|
19 |
+
url = 'https://drive.google.com/drive/folders/11mRvsHAkggFEJvG4axH4mmWI6FHMQp7X?usp=sharing'
|
20 |
+
data = 'data/nela_gt_2018_site_split'
|
21 |
+
|
22 |
+
os.system(f'gdown --folder {url} -O {data}')
|
23 |
+
|
24 |
+
@st.cache(allow_output_mutation=True)
|
25 |
+
def jsonl_to_df(file_path):
|
26 |
+
with open(file_path) as f:
|
27 |
+
lines = f.read().splitlines()
|
28 |
+
|
29 |
+
df_inter = pd.DataFrame(lines)
|
30 |
+
df_inter.columns = ['json_element']
|
31 |
+
|
32 |
+
df_inter['json_element'].apply(json.loads)
|
33 |
+
|
34 |
+
return pd.json_normalize(df_inter['json_element'].apply(json.loads))
|
35 |
+
|
36 |
+
@st.cache
|
37 |
+
def load_test_df():
|
38 |
+
file_path = os.path.join('data', 'nela_gt_2018_site_split', 'test.jsonl')
|
39 |
+
test_df = jsonl_to_df(file_path)
|
40 |
+
test_df = pd.get_dummies(test_df, columns = ['label'])
|
41 |
+
return test_df
|
42 |
+
|
43 |
+
@st.cache(allow_output_mutation=True)
|
44 |
+
def predict(model, tokenizer, data):
|
45 |
+
|
46 |
+
labels = data[['label_0', 'label_1']]
|
47 |
+
labels = torch.tensor(labels, dtype=torch.float32)
|
48 |
+
encoding = tokenizer.encode_plus(
|
49 |
+
data['title'],
|
50 |
+
' [SEP] ' + data['content'],
|
51 |
+
add_special_tokens=True,
|
52 |
+
max_length = 512,
|
53 |
+
return_token_type_ids = False,
|
54 |
+
padding = 'max_length',
|
55 |
+
truncation = 'only_second',
|
56 |
+
return_attention_mask = True,
|
57 |
+
return_tensors = 'pt'
|
58 |
+
)
|
59 |
+
|
60 |
+
output = model(**encoding)
|
61 |
+
return correct_preds(output['logits'], labels)
|
62 |
+
|
63 |
+
@st.cache(allow_output_mutation=True)
|
64 |
+
def predict_new(model, tokenizer, title, content):
|
65 |
+
encoding = tokenizer.encode_plus(
|
66 |
+
title,
|
67 |
+
' [SEP] ' + content,
|
68 |
+
add_special_tokens=True,
|
69 |
+
max_length = 512,
|
70 |
+
return_token_type_ids = False,
|
71 |
+
padding = 'max_length',
|
72 |
+
truncation = 'only_second',
|
73 |
+
return_attention_mask = True,
|
74 |
+
return_tensors = 'pt'
|
75 |
+
)
|
76 |
+
output = model(**encoding)
|
77 |
+
preds = F.softmax(output['logits'], dim = 1)
|
78 |
+
p_idx = torch.argmax(preds, dim = 1)
|
79 |
+
return 'reliable' if p_idx > 0 else 'unreliable'
|
80 |
+
|
81 |
+
def correct_preds(preds, labels):
|
82 |
+
preds = torch.nn.functional.softmax(preds, dim = 1)
|
83 |
+
p_idx = torch.argmax(preds, dim=1)
|
84 |
+
l_idx = torch.argmax(labels, dim=0)
|
85 |
+
|
86 |
+
pred_label = 'reliable' if p_idx > 0 else 'unreliable'
|
87 |
+
correct = True if (p_idx == l_idx).sum().item() > 0 else False
|
88 |
+
return pred_label, correct
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == '__main__':
|
92 |
+
if not os.path.exists('data/nela_gt_2018_site_split/test.jsonl'):
|
93 |
+
download_dataset()
|
94 |
+
df = load_test_df()
|
95 |
+
tokenizer, model = init_model()
|
96 |
+
|
97 |
+
st.title("Unreliable News classifier")
|
98 |
+
mode = st.radio(
|
99 |
+
'', ('Test article', 'Input own article')
|
100 |
+
)
|
101 |
+
if mode == 'Test article':
|
102 |
+
if st.button('Get random article'):
|
103 |
+
idx = np.random.randint(0, len(df))
|
104 |
+
sample = df.iloc[idx]
|
105 |
+
|
106 |
+
prediction, correct = predict(model, tokenizer, sample)
|
107 |
+
label = 'reliable' if sample['label_1'] > sample['label_0'] else 'unreliable'
|
108 |
+
st.header(sample['title'])
|
109 |
+
if correct:
|
110 |
+
st.success(f'Prediction: {prediction}')
|
111 |
+
else:
|
112 |
+
st.error(f'Prediction: {prediction}')
|
113 |
+
st.caption(f'Source: {sample["source"]} ({label})')
|
114 |
+
st.markdown(sample['content'])
|
115 |
+
else:
|
116 |
+
title = st.text_input('Article title', 'Test title')
|
117 |
+
content = st.text_area('Article content', 'Lorem ipsum')
|
118 |
+
if st.button('Submit'):
|
119 |
+
pred = predict_new(model, tokenizer, title, content)
|
120 |
+
st.markdown(f'Prediction: {pred}')
|
121 |
+
# st.success('success')
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-f https://download.pytorch.org/whl/cu113/torch_stable.html
|
2 |
+
gdown==4.2.0
|
3 |
+
numpy==1.21.4
|
4 |
+
pandas==1.3.4
|
5 |
+
torch==1.10.1
|
6 |
+
transformers==4.13.0
|