import gradio as gr import os import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread from typing import Generator # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) DESCRIPTION = """

SPUM Table Extraction

This Space demonstrates the instruction-tuned model Meta Llama3 8b Chat. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!

""" PLACEHOLDER = """

Materials GPT

Ask me anything...

""" css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ # Load the tokenizer and model model_id = "khulaifi95/Llama-3.1-8B-Reason-Blend-888k" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")] @spaces.GPU def chat_llama3_8b( message: str, history: list, temperature: float, max_new_tokens: int ) -> Generator[str, None, None]: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] for user, assistant in history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to( model.device ) streamer = TextIteratorStreamer( tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs["do_sample"] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) # print(outputs) yield "".join(outputs) # Gradio block chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface") with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False, ), ], examples=[ ["The detonative temperature of this polypropylene is 2000°F."], ["The preparation method according to claim 1, characterized in that the SO2 accounts for 30 wt% and the Fe2O3 accounts for 70 wt%."], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()