Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,30 +7,24 @@ import string
|
|
7 |
|
8 |
import gradio as gr
|
9 |
import PIL.Image
|
10 |
-
import spaces
|
11 |
import torch
|
12 |
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
13 |
|
14 |
-
DESCRIPTION = "# [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)"
|
15 |
|
16 |
if not torch.cuda.is_available():
|
17 |
DESCRIPTION += "\n<p>Running on CPU.</p>"
|
18 |
|
19 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
-
|
22 |
MODEL_ID = "Salesforce/instructblip-flan-t5-xl"
|
23 |
|
24 |
-
|
25 |
-
|
26 |
processor = InstructBlipProcessor.from_pretrained(MODEL_ID)
|
27 |
model = InstructBlipForConditionalGeneration.from_pretrained(MODEL_ID).to(device)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
def generate_caption(
|
33 |
image: PIL.Image.Image,
|
|
|
34 |
decoding_method: str = "Nucleus sampling",
|
35 |
temperature: float = 1.0,
|
36 |
length_penalty: float = 1.0,
|
@@ -40,35 +34,15 @@ def generate_caption(
|
|
40 |
num_beams: int = 5,
|
41 |
top_p: float = 0.9,
|
42 |
) -> str:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
min_length=min_length,
|
52 |
-
num_beams=num_beams,
|
53 |
-
top_p=top_p,
|
54 |
-
)
|
55 |
-
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
56 |
-
return result
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
def answer_question(
|
61 |
-
image: PIL.Image.Image,
|
62 |
-
prompt: str,
|
63 |
-
decoding_method: str = "Nucleus sampling",
|
64 |
-
temperature: float = 1.0,
|
65 |
-
length_penalty: float = 1.0,
|
66 |
-
repetition_penalty: float = 1.5,
|
67 |
-
max_length: int = 50,
|
68 |
-
min_length: int = 1,
|
69 |
-
num_beams: int = 5,
|
70 |
-
top_p: float = 0.9,
|
71 |
-
) -> str:
|
72 |
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
73 |
generated_ids = model.generate(
|
74 |
**inputs,
|
@@ -84,239 +58,52 @@ def answer_question(
|
|
84 |
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
85 |
return result
|
86 |
|
87 |
-
|
88 |
def postprocess_output(output: str) -> str:
|
89 |
if output and output[-1] not in string.punctuation:
|
90 |
output += "."
|
91 |
return output
|
92 |
|
93 |
-
|
94 |
-
def chat(
|
95 |
-
image: PIL.Image.Image,
|
96 |
-
text: str,
|
97 |
-
decoding_method: str = "Nucleus sampling",
|
98 |
-
temperature: float = 1.0,
|
99 |
-
length_penalty: float = 1.0,
|
100 |
-
repetition_penalty: float = 1.5,
|
101 |
-
max_length: int = 50,
|
102 |
-
min_length: int = 1,
|
103 |
-
num_beams: int = 5,
|
104 |
-
top_p: float = 0.9,
|
105 |
-
history_orig: list[str] = [],
|
106 |
-
history_qa: list[str] = [],
|
107 |
-
) -> tuple[list[tuple[str, str]], list[str], list[str]]:
|
108 |
-
history_orig.append(text)
|
109 |
-
text_qa = f"Question: {text} Answer:"
|
110 |
-
history_qa.append(text_qa)
|
111 |
-
prompt = " ".join(history_qa)
|
112 |
-
|
113 |
-
output = answer_question(
|
114 |
-
image=image,
|
115 |
-
prompt=prompt,
|
116 |
-
decoding_method=decoding_method,
|
117 |
-
temperature=temperature,
|
118 |
-
length_penalty=length_penalty,
|
119 |
-
repetition_penalty=repetition_penalty,
|
120 |
-
max_length=max_length,
|
121 |
-
min_length=min_length,
|
122 |
-
num_beams=num_beams,
|
123 |
-
top_p=top_p,
|
124 |
-
)
|
125 |
-
output = postprocess_output(output)
|
126 |
-
history_orig.append(output)
|
127 |
-
history_qa.append(output)
|
128 |
-
|
129 |
-
chat_val = list(zip(history_orig[0::2], history_orig[1::2]))
|
130 |
-
return chat_val, history_orig, history_qa
|
131 |
-
|
132 |
-
|
133 |
-
examples = [
|
134 |
-
[
|
135 |
-
"images/house.png",
|
136 |
-
"How could someone get out of the house?",
|
137 |
-
],
|
138 |
-
[
|
139 |
-
"images/flower.jpg",
|
140 |
-
"What is this flower and where is it's origin?",
|
141 |
-
],
|
142 |
-
[
|
143 |
-
"images/pizza.jpg",
|
144 |
-
"What are steps to cook it?",
|
145 |
-
],
|
146 |
-
[
|
147 |
-
"images/sunset.jpg",
|
148 |
-
"Here is a romantic message going along the photo:",
|
149 |
-
],
|
150 |
-
[
|
151 |
-
"images/forbidden_city.webp",
|
152 |
-
"In what dynasties was this place built?",
|
153 |
-
],
|
154 |
-
]
|
155 |
-
|
156 |
with gr.Blocks() as demo:
|
157 |
gr.Markdown(DESCRIPTION)
|
158 |
|
159 |
with gr.Group():
|
|
|
160 |
image = gr.Image(type="pil")
|
161 |
-
|
162 |
-
with gr.Tab(label="Image Captioning"):
|
163 |
-
caption_button = gr.Button("Caption it!")
|
164 |
-
caption_output = gr.Textbox(label="Caption Output", show_label=False, container=False)
|
165 |
-
with gr.Tab(label="Visual Question Answering"):
|
166 |
-
chatbot = gr.Chatbot(label="VQA Chat", show_label=False)
|
167 |
-
history_orig = gr.State(value=[])
|
168 |
-
history_qa = gr.State(value=[])
|
169 |
-
vqa_input = gr.Text(label="Chat Input", show_label=False, max_lines=1, container=False)
|
170 |
-
with gr.Row():
|
171 |
-
clear_chat_button = gr.Button("Clear")
|
172 |
-
chat_button = gr.Button("Submit", variant="primary")
|
173 |
-
with gr.Accordion(label="Advanced settings", open=False):
|
174 |
-
text_decoding_method = gr.Radio(
|
175 |
-
label="Text Decoding Method",
|
176 |
-
choices=["Beam search", "Nucleus sampling"],
|
177 |
-
value="Nucleus sampling",
|
178 |
-
)
|
179 |
-
temperature = gr.Slider(
|
180 |
-
label="Temperature",
|
181 |
-
info="Used with nucleus sampling.",
|
182 |
-
minimum=0.5,
|
183 |
-
maximum=1.0,
|
184 |
-
step=0.1,
|
185 |
-
value=1.0,
|
186 |
-
)
|
187 |
-
length_penalty = gr.Slider(
|
188 |
-
label="Length Penalty",
|
189 |
-
info="Set to larger for longer sequence, used with beam search.",
|
190 |
-
minimum=-1.0,
|
191 |
-
maximum=2.0,
|
192 |
-
step=0.2,
|
193 |
-
value=1.0,
|
194 |
-
)
|
195 |
-
repetition_penalty = gr.Slider(
|
196 |
-
label="Repetition Penalty",
|
197 |
-
info="Larger value prevents repetition.",
|
198 |
-
minimum=1.0,
|
199 |
-
maximum=5.0,
|
200 |
-
step=0.5,
|
201 |
-
value=1.5,
|
202 |
-
)
|
203 |
-
max_length = gr.Slider(
|
204 |
-
label="Max Length",
|
205 |
-
minimum=20,
|
206 |
-
maximum=512,
|
207 |
-
step=1,
|
208 |
-
value=50,
|
209 |
-
)
|
210 |
-
min_length = gr.Slider(
|
211 |
-
label="Minimum Length",
|
212 |
-
minimum=1,
|
213 |
-
maximum=100,
|
214 |
-
step=1,
|
215 |
-
value=1,
|
216 |
-
)
|
217 |
-
num_beams = gr.Slider(
|
218 |
-
label="Number of Beams",
|
219 |
-
minimum=1,
|
220 |
-
maximum=10,
|
221 |
-
step=1,
|
222 |
-
value=5,
|
223 |
-
)
|
224 |
-
top_p = gr.Slider(
|
225 |
-
label="Top P",
|
226 |
-
info="Used with nucleus sampling.",
|
227 |
-
minimum=0.5,
|
228 |
-
maximum=1.0,
|
229 |
-
step=0.1,
|
230 |
-
value=0.9,
|
231 |
-
)
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
inputs=[image, vqa_input],
|
236 |
-
outputs=caption_output,
|
237 |
-
fn=generate_caption,
|
238 |
-
)
|
239 |
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
inputs=[
|
243 |
image,
|
244 |
-
|
245 |
-
temperature,
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
252 |
],
|
253 |
-
outputs=
|
254 |
-
api_name="caption",
|
255 |
)
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
text_decoding_method,
|
261 |
-
temperature,
|
262 |
-
length_penalty,
|
263 |
-
repetition_penalty,
|
264 |
-
max_length,
|
265 |
-
min_length,
|
266 |
-
num_beams,
|
267 |
-
top_p,
|
268 |
-
history_orig,
|
269 |
-
history_qa,
|
270 |
-
]
|
271 |
-
chat_outputs = [
|
272 |
-
chatbot,
|
273 |
-
history_orig,
|
274 |
-
history_qa,
|
275 |
-
]
|
276 |
-
vqa_input.submit(
|
277 |
-
fn=chat,
|
278 |
-
inputs=chat_inputs,
|
279 |
-
outputs=chat_outputs,
|
280 |
-
).success(
|
281 |
-
fn=lambda: "",
|
282 |
-
outputs=vqa_input,
|
283 |
-
queue=False,
|
284 |
-
api_name=False,
|
285 |
-
)
|
286 |
-
chat_button.click(
|
287 |
-
fn=chat,
|
288 |
-
inputs=chat_inputs,
|
289 |
-
outputs=chat_outputs,
|
290 |
-
api_name="chat",
|
291 |
-
).success(
|
292 |
-
fn=lambda: "",
|
293 |
-
outputs=vqa_input,
|
294 |
-
queue=False,
|
295 |
-
api_name=False,
|
296 |
-
)
|
297 |
-
clear_chat_button.click(
|
298 |
-
fn=lambda: ("", [], [], []),
|
299 |
-
inputs=None,
|
300 |
-
outputs=[
|
301 |
-
vqa_input,
|
302 |
-
chatbot,
|
303 |
-
history_orig,
|
304 |
-
history_qa,
|
305 |
-
],
|
306 |
-
queue=False,
|
307 |
-
api_name="clear",
|
308 |
-
)
|
309 |
-
image.change(
|
310 |
-
fn=lambda: ("", [], [], []),
|
311 |
inputs=None,
|
312 |
-
outputs=[
|
313 |
-
caption_output,
|
314 |
-
chatbot,
|
315 |
-
history_orig,
|
316 |
-
history_qa,
|
317 |
-
],
|
318 |
queue=False,
|
319 |
)
|
320 |
|
321 |
if __name__ == "__main__":
|
322 |
-
demo.queue(max_size=10).launch()
|
|
|
7 |
|
8 |
import gradio as gr
|
9 |
import PIL.Image
|
|
|
10 |
import torch
|
11 |
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
12 |
|
13 |
+
DESCRIPTION = "# [BLIP-2 VQA Ad Listing Analysis](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)"
|
14 |
|
15 |
if not torch.cuda.is_available():
|
16 |
DESCRIPTION += "\n<p>Running on CPU.</p>"
|
17 |
|
18 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19 |
|
|
|
20 |
MODEL_ID = "Salesforce/instructblip-flan-t5-xl"
|
21 |
|
|
|
|
|
22 |
processor = InstructBlipProcessor.from_pretrained(MODEL_ID)
|
23 |
model = InstructBlipForConditionalGeneration.from_pretrained(MODEL_ID).to(device)
|
24 |
|
25 |
+
def answer_ad_listing_question(
|
|
|
|
|
|
|
26 |
image: PIL.Image.Image,
|
27 |
+
title: str,
|
28 |
decoding_method: str = "Nucleus sampling",
|
29 |
temperature: float = 1.0,
|
30 |
length_penalty: float = 1.0,
|
|
|
34 |
num_beams: int = 5,
|
35 |
top_p: float = 0.9,
|
36 |
) -> str:
|
37 |
+
# The prompt template with the provided title
|
38 |
+
prompt = f"""Given an ad listing with the title '{title}' and image, answer the following questions without any explanation or extra text:
|
39 |
+
Identify the species mentioned in the text, including specific names, e.g., 'Nile crocodile' instead of just 'crocodile'.
|
40 |
+
Select the product type from the following options: Animal fibers, Animal parts (bone or bone-like), Animal parts (fleshy), Coral product, Egg, Extract, Food, Ivory products, Live, Medicine, Nests, Organs and tissues, Powder, Scales or spines, Shells, Skin or leather products, Taxidermy, Insects.
|
41 |
+
The response should be in the format:
|
42 |
+
"Product Type: [type]
|
43 |
+
Species: [species]"
|
44 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
47 |
generated_ids = model.generate(
|
48 |
**inputs,
|
|
|
58 |
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
59 |
return result
|
60 |
|
|
|
61 |
def postprocess_output(output: str) -> str:
|
62 |
if output and output[-1] not in string.punctuation:
|
63 |
output += "."
|
64 |
return output
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
with gr.Blocks() as demo:
|
67 |
gr.Markdown(DESCRIPTION)
|
68 |
|
69 |
with gr.Group():
|
70 |
+
# Image and ad title input
|
71 |
image = gr.Image(type="pil")
|
72 |
+
ad_title = gr.Textbox(label="Ad Title", placeholder="Enter the ad title here", lines=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Output section
|
75 |
+
answer_output = gr.Textbox(label="Ad Listing Analysis", show_label=True, placeholder="Response will appear here.")
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Submit and clear buttons
|
78 |
+
with gr.Row():
|
79 |
+
submit_button = gr.Button("Analyze Ad Listing", variant="primary")
|
80 |
+
clear_button = gr.Button("Clear")
|
81 |
+
|
82 |
+
# Logic to handle clicking on "Analyze Ad Listing"
|
83 |
+
submit_button.click(
|
84 |
+
fn=answer_ad_listing_question,
|
85 |
inputs=[
|
86 |
image,
|
87 |
+
ad_title, # The title from the ad
|
88 |
+
"Nucleus sampling", # Default values for decoding method, temperature, etc.
|
89 |
+
1.0, # temperature
|
90 |
+
1.0, # length_penalty
|
91 |
+
1.5, # repetition_penalty
|
92 |
+
50, # max_length
|
93 |
+
1, # min_length
|
94 |
+
5, # num_beams
|
95 |
+
0.9, # top_p
|
96 |
],
|
97 |
+
outputs=answer_output,
|
|
|
98 |
)
|
99 |
|
100 |
+
# Logic to handle clearing the inputs and outputs
|
101 |
+
clear_button.click(
|
102 |
+
fn=lambda: ("", "", ""), # Clear all the fields
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
inputs=None,
|
104 |
+
outputs=[image, ad_title, answer_output],
|
|
|
|
|
|
|
|
|
|
|
105 |
queue=False,
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
+
demo.queue(max_size=10).launch()
|