Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from PIL import Image, PngImagePlugin | |
from diffusers import DiffusionPipeline | |
import random | |
import os | |
import pygsheets | |
from datetime import datetime | |
from transformers.utils.hub import move_cache | |
import json | |
from gradio_client import Client | |
# Move cache | |
move_cache() | |
# Initialize GSheet Connexion | |
#Authorization | |
gc = pygsheets.authorize(service_account_env_var='GSHEET_AUTH') | |
#Open the google spreadsheet | |
sh = gc.open('AndroFLUX-Logs') | |
#Select the first sheet | |
wks = sh[0] | |
# Initialize the base model and specific LoRA | |
base_model = "black-forest-labs/FLUX.1-dev" | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) | |
lora_repo = "markury/AndroFlux" | |
trigger_word = "" # Leave trigger_word blank if not used. | |
pipe.load_lora_weights(lora_repo, weight_name = "AndroFlux-v19.safetensors") | |
pipe.to("cuda") | |
MAX_SEED = 2**32-1 | |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
# Set random seed for reproducibility | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
# Log prompt | |
print('PROMPT: ' + prompt + 'SEED:' + str(seed) + 'CFG: '+ str(cfg_scale)) | |
#Moderation | |
moderation_client = Client("duchaba/Friendly_Text_Moderation") | |
result = moderation_client.predict( | |
msg=f"{prompt}", | |
safer=0.02, | |
api_name="/fetch_toxicity_level" | |
) | |
if float(json.loads(result[1])['sexual_minors']) > 0.03 : | |
print('Minors') | |
raise gr.Error("Unauthorized request 💥!") | |
# Update progress bar (0% saat mulai) | |
progress(0, "Starting image generation...") | |
# Generate image with progress updates | |
for i in range(1, steps + 1): | |
# Simulate the processing step (in a real scenario, you would integrate this with your image generation process) | |
if i % (steps // 10) == 0: # Update every 10% of the steps | |
progress(i / steps * 100, f"Processing step {i} of {steps}...") | |
# Generate image using the pipeline | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
max_sequence_length=512 | |
).images[0] | |
# Save the image to a file with a unique name in /tmp directory | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
image_filename = f"generated_image_{timestamp}.png" | |
image_path = os.path.join("/tmp/gradio", image_filename) | |
# Add Metadata | |
new_metadata_string = f"{prompt}\nNegative prompt: none \nSteps: {steps}, CFG scale: {cfg_scale}, Seed: {seed}, Lora hashes: AndroFlux-v19: c44afd41ece1" | |
metadata = PngImagePlugin.PngInfo() | |
metadata.add_text("parameters", new_metadata_string) | |
image.save(image_path, pnginfo=metadata) | |
# Construct the URL to access the image | |
space_url = "https://killwithabass-flux-1-dev-lora-androflux.hf.space" # Replace with your actual space URL | |
image_url = f"{space_url}/gradio_api/file={image_path}" | |
#Log queries | |
try: | |
if "girl" not in prompt and "woman" not in prompt: | |
wks.append_table(values=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale,image_url]) | |
except Exception as error: | |
# handle the exception | |
print("An exception occurred:", error) | |
print(f"Image URL: {image_url}") # Log the file URL | |
# Final update (100%) | |
progress(100, "Completed!") | |
yield image, seed | |
# Example cached image and settings | |
example_image_path = "blond_5.webp" # Replace with the actual path to the example image | |
example_prompt = """a full frontal view photo of a athletic man with olive skin in his late twenties standing on a flowery terrace at golden hour. He is fully naked with a thick uncut penis and blond pubic hair. The man has long blond hair and has a dominant expression. The setting is outdoors, with a peaceful and aesthetic atmosphere.""" | |
example_cfg_scale = 3.5 | |
example_steps = 25 | |
example_width = 896 | |
example_height = 1152 | |
example_seed = 556215326 | |
example_lora_scale = 1 | |
def load_example(): | |
# Load example image from file | |
example_image = Image.open(example_image_path) | |
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image | |
with gr.Blocks() as app: | |
gr.Markdown("# Androflux Image Generator") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt of max 77 characters", lines=3) | |
generate_button = gr.Button("Generate") | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps) | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height) | |
randomize_seed = gr.Checkbox(False, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale) | |
with gr.Column(scale=1): | |
result = gr.Image(label="Generated Image") | |
gr.Markdown("Generate images using Androflux Lora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]") | |
# Automatically load example data and image when the interface is launched | |
app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]) | |
generate_button.click( | |
run_lora, | |
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], | |
outputs=[result, seed], | |
) | |
app.queue() | |
app.launch() |