import os import gradio as gr from llama_index.core import SimpleDirectoryReader, VectorStoreIndex from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding from llama_index.llms.groq import Groq from llama_parse import LlamaParse # API keys llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY") groq_key = os.environ.get("GROQ_API_KEY") mxbai_key = os.environ.get("MXBAI_API_KEY") if not (llama_cloud_key and groq_key and mxbai_key): raise ValueError( "API Keys not found! Ensure they are passed to the Docker container." ) # models name llm_model_name = "llama-3.1-70b-versatile" embed_model_name = "mixedbread-ai/mxbai-embed-large-v1" # Initialize the parser parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown") # Define file extractor with various common extensions file_extractor = { ".pdf": parser, ".docx": parser, ".doc": parser, ".txt": parser, ".csv": parser, ".xlsx": parser, ".pptx": parser, ".html": parser, ".jpg": parser, ".jpeg": parser, ".png": parser, ".webp": parser, ".svg": parser, } # Initialize the embedding model embed_model = MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name) # Initialize the LLM llm = Groq(model="llama-3.1-70b-versatile", api_key=groq_key) # File processing function def load_files(file_path: str): global vector_index if not file_path: return "No file path provided. Please upload a file." valid_extensions = ', '.join(file_extractor.keys()) if not any(file_path.endswith(ext) for ext in file_extractor): return f"The parser can only parse the following file types: {valid_extensions}" document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data() vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model) print(f"Parsing completed for: {file_path}") filename = os.path.basename(file_path) return f"Ready to provide responses based on: {filename}" # Respond function def respond(message, history): try: # Use the preloaded LLM query_engine = vector_index.as_query_engine(streaming=True, llm=llm) streaming_response = query_engine.query(message) partial_text = "" for new_text in streaming_response.response_gen: partial_text += new_text # Yield an empty string to cleanup the message textbox and the updated conversation history yield partial_text except (AttributeError, NameError): print("An error occurred while processing your request.") yield "Please upload the file to begin chat." # Clear function def clear_state(): global vector_index vector_index = None return [None, None, None] # UI Setup with gr.Blocks( theme=gr.themes.Default( primary_hue="green", secondary_hue="blue", font=[gr.themes.GoogleFont("Poppins")], ), css="footer {visibility: hidden}", ) as demo: gr.Markdown("# DataCamp Doc Q&A 🤖📃") with gr.Row(): with gr.Column(scale=1): file_input = gr.File( file_count="single", type="filepath", label="Upload Document" ) with gr.Row(): btn = gr.Button("Submit", variant="primary") clear = gr.Button("Clear") output = gr.Textbox(label="Status") with gr.Column(scale=3): chatbot = gr.ChatInterface( fn=respond, chatbot=gr.Chatbot(height=300), theme="soft", show_progress="full", textbox=gr.Textbox( placeholder="Ask questions about the uploaded document!", container=False, ), ) # Set up Gradio interactions btn.click(fn=load_files, inputs=file_input, outputs=output) clear.click( fn=clear_state, # Use the clear_state function outputs=[file_input, output], ) # Launch the demo if __name__ == "__main__": demo.launch()