File size: 19,275 Bytes
d59aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
from toolbox.ui import UI
from encoder import inference as encoder
from synthesizer.inference import Synthesizer
from vocoder.wavernn import inference as rnn_vocoder
from vocoder.hifigan import inference as gan_vocoder
from vocoder.fregan import inference as fgan_vocoder
from pathlib import Path
from time import perf_counter as timer
from toolbox.utterance import Utterance
import numpy as np
import traceback
import sys
import torch
import re

# 默认使用wavernn
vocoder = rnn_vocoder

# Use this directory structure for your datasets, or modify it to fit your needs
recognized_datasets = [
    "LibriSpeech/dev-clean",
    "LibriSpeech/dev-other",
    "LibriSpeech/test-clean",
    "LibriSpeech/test-other",
    "LibriSpeech/train-clean-100",
    "LibriSpeech/train-clean-360",
    "LibriSpeech/train-other-500",
    "LibriTTS/dev-clean",
    "LibriTTS/dev-other",
    "LibriTTS/test-clean",
    "LibriTTS/test-other",
    "LibriTTS/train-clean-100",
    "LibriTTS/train-clean-360",
    "LibriTTS/train-other-500",
    "LJSpeech-1.1",
    "VoxCeleb1/wav",
    "VoxCeleb1/test_wav",
    "VoxCeleb2/dev/aac",
    "VoxCeleb2/test/aac",
    "VCTK-Corpus/wav48",
    "aidatatang_200zh/corpus/dev",
    "aidatatang_200zh/corpus/test",
    "aishell3/test/wav",
    "magicdata/train",
]

#Maximum of generated wavs to keep on memory
MAX_WAVES = 15

class Toolbox:
    def __init__(self, datasets_root, enc_models_dir, syn_models_dir, voc_models_dir, extractor_models_dir, convertor_models_dir, seed, no_mp3_support, vc_mode):
        self.no_mp3_support = no_mp3_support
        self.vc_mode = vc_mode
        sys.excepthook = self.excepthook
        self.datasets_root = datasets_root
        self.utterances = set()
        self.current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav
        
        self.synthesizer = None # type: Synthesizer

        # for ppg-based voice conversion
        self.extractor = None 
        self.convertor = None # ppg2mel

        self.current_wav = None
        self.waves_list = []
        self.waves_count = 0
        self.waves_namelist = []

        # Check for webrtcvad (enables removal of silences in vocoder output)
        try:
            import webrtcvad
            self.trim_silences = True
        except:
            self.trim_silences = False

        # Initialize the events and the interface
        self.ui = UI(vc_mode)
        self.style_idx = 0
        self.reset_ui(enc_models_dir, syn_models_dir, voc_models_dir, extractor_models_dir, convertor_models_dir, seed)
        self.setup_events()
        self.ui.start()

    def excepthook(self, exc_type, exc_value, exc_tb):
        traceback.print_exception(exc_type, exc_value, exc_tb)
        self.ui.log("Exception: %s" % exc_value)
        
    def setup_events(self):
        # Dataset, speaker and utterance selection
        self.ui.browser_load_button.clicked.connect(lambda: self.load_from_browser())
        random_func = lambda level: lambda: self.ui.populate_browser(self.datasets_root,
                                                                     recognized_datasets,
                                                                     level)
        self.ui.random_dataset_button.clicked.connect(random_func(0))
        self.ui.random_speaker_button.clicked.connect(random_func(1))
        self.ui.random_utterance_button.clicked.connect(random_func(2))
        self.ui.dataset_box.currentIndexChanged.connect(random_func(1))
        self.ui.speaker_box.currentIndexChanged.connect(random_func(2))
        
        # Model selection
        self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder)
        def func(): 
            self.synthesizer = None
        if self.vc_mode:
            self.ui.extractor_box.currentIndexChanged.connect(self.init_extractor)
        else:
            self.ui.synthesizer_box.currentIndexChanged.connect(func)

        self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder)
        
        # Utterance selection
        func = lambda: self.load_from_browser(self.ui.browse_file())
        self.ui.browser_browse_button.clicked.connect(func)
        func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current")
        self.ui.utterance_history.currentIndexChanged.connect(func)
        func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer.sample_rate)
        self.ui.play_button.clicked.connect(func)
        self.ui.stop_button.clicked.connect(self.ui.stop)
        self.ui.record_button.clicked.connect(self.record)

        # Source Utterance selection
        if self.vc_mode:
            func = lambda: self.load_soruce_button(self.ui.selected_utterance)
            self.ui.load_soruce_button.clicked.connect(func)

        #Audio
        self.ui.setup_audio_devices(Synthesizer.sample_rate)

        #Wav playback & save
        func = lambda: self.replay_last_wav()
        self.ui.replay_wav_button.clicked.connect(func)
        func = lambda: self.export_current_wave()
        self.ui.export_wav_button.clicked.connect(func)
        self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav)

        # Generation
        self.ui.vocode_button.clicked.connect(self.vocode)
        self.ui.random_seed_checkbox.clicked.connect(self.update_seed_textbox)

        if self.vc_mode:
            func = lambda: self.convert() or self.vocode()
            self.ui.convert_button.clicked.connect(func)
        else:
            func = lambda: self.synthesize() or self.vocode()
            self.ui.generate_button.clicked.connect(func)
            self.ui.synthesize_button.clicked.connect(self.synthesize)

        # UMAP legend
        self.ui.clear_button.clicked.connect(self.clear_utterances)

    def set_current_wav(self, index):
        self.current_wav = self.waves_list[index]

    def export_current_wave(self):
        self.ui.save_audio_file(self.current_wav, Synthesizer.sample_rate)

    def replay_last_wav(self):
        self.ui.play(self.current_wav, Synthesizer.sample_rate)

    def reset_ui(self, encoder_models_dir, synthesizer_models_dir, vocoder_models_dir, extractor_models_dir, convertor_models_dir, seed):
        self.ui.populate_browser(self.datasets_root, recognized_datasets, 0, True)
        self.ui.populate_models(encoder_models_dir, synthesizer_models_dir, vocoder_models_dir, extractor_models_dir, convertor_models_dir, self.vc_mode)
        self.ui.populate_gen_options(seed, self.trim_silences)
        
    def load_from_browser(self, fpath=None):
        if fpath is None:
            fpath = Path(self.datasets_root,
                         self.ui.current_dataset_name,
                         self.ui.current_speaker_name,
                         self.ui.current_utterance_name)
            name = str(fpath.relative_to(self.datasets_root))
            speaker_name = self.ui.current_dataset_name + '_' + self.ui.current_speaker_name
            
            # Select the next utterance
            if self.ui.auto_next_checkbox.isChecked():
                self.ui.browser_select_next()
        elif fpath == "":
            return 
        else:
            name = fpath.name
            speaker_name = fpath.parent.name

        if fpath.suffix.lower() == ".mp3" and self.no_mp3_support:
                self.ui.log("Error: No mp3 file argument was passed but an mp3 file was used")
                return

        # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for
        # playback, so as to have a fair comparison with the generated audio
        wav = Synthesizer.load_preprocess_wav(fpath)
        self.ui.log("Loaded %s" % name)

        self.add_real_utterance(wav, name, speaker_name)
    
    def load_soruce_button(self, utterance: Utterance):
        self.selected_source_utterance = utterance

    def record(self):
        wav = self.ui.record_one(encoder.sampling_rate, 5)
        if wav is None:
            return 
        self.ui.play(wav, encoder.sampling_rate)

        speaker_name = "user01"
        name = speaker_name + "_rec_%05d" % np.random.randint(100000)
        self.add_real_utterance(wav, name, speaker_name)
        
    def add_real_utterance(self, wav, name, speaker_name):
        # Compute the mel spectrogram
        spec = Synthesizer.make_spectrogram(wav)
        self.ui.draw_spec(spec, "current")

        # Compute the embedding
        if not encoder.is_loaded():
            self.init_encoder()
        encoder_wav = encoder.preprocess_wav(wav)
        embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True)

        # Add the utterance
        utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False)
        self.utterances.add(utterance)
        self.ui.register_utterance(utterance, self.vc_mode)

        # Plot it
        self.ui.draw_embed(embed, name, "current")
        self.ui.draw_umap_projections(self.utterances)
        
    def clear_utterances(self):
        self.utterances.clear()
        self.ui.draw_umap_projections(self.utterances)
        
    def synthesize(self):
        self.ui.log("Generating the mel spectrogram...")
        self.ui.set_loading(1)
        
        # Update the synthesizer random seed
        if self.ui.random_seed_checkbox.isChecked():
            seed = int(self.ui.seed_textbox.text())
            self.ui.populate_gen_options(seed, self.trim_silences)
        else:
            seed = None

        if seed is not None:
            torch.manual_seed(seed)

        # Synthesize the spectrogram
        if self.synthesizer is None or seed is not None:
            self.init_synthesizer()

        texts = self.ui.text_prompt.toPlainText().split("\n")
        punctuation = '!,。、,' # punctuate and split/clean text
        processed_texts = []
        for text in texts:
          for processed_text in re.sub(r'[{}]+'.format(punctuation), '\n', text).split('\n'):
            if processed_text:
                processed_texts.append(processed_text.strip())
        texts = processed_texts
        embed = self.ui.selected_utterance.embed
        embeds = [embed] * len(texts)
        min_token = int(self.ui.token_slider.value())
        specs = self.synthesizer.synthesize_spectrograms(texts, embeds, style_idx=int(self.ui.style_slider.value()), min_stop_token=min_token, steps=int(self.ui.length_slider.value())*200)
        breaks = [spec.shape[1] for spec in specs]
        spec = np.concatenate(specs, axis=1)
        
        self.ui.draw_spec(spec, "generated")
        self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None)
        self.ui.set_loading(0)

    def vocode(self):
        speaker_name, spec, breaks, _ = self.current_generated
        assert spec is not None

        # Initialize the vocoder model and make it determinstic, if user provides a seed
        if self.ui.random_seed_checkbox.isChecked():
            seed = int(self.ui.seed_textbox.text())
            self.ui.populate_gen_options(seed, self.trim_silences)
        else:
            seed = None

        if seed is not None:
            torch.manual_seed(seed)

        # Synthesize the waveform
        if not vocoder.is_loaded() or seed is not None:
            self.init_vocoder()

        def vocoder_progress(i, seq_len, b_size, gen_rate):
            real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000
            line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \
                   % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor)
            self.ui.log(line, "overwrite")
            self.ui.set_loading(i, seq_len)
        if self.ui.current_vocoder_fpath is not None:
            self.ui.log("")
            wav, sample_rate = vocoder.infer_waveform(spec, progress_callback=vocoder_progress)
        else:
            self.ui.log("Waveform generation with Griffin-Lim... ")
            wav = Synthesizer.griffin_lim(spec)
        self.ui.set_loading(0)
        self.ui.log(" Done!", "append")
        
        # Add breaks
        b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size)
        b_starts = np.concatenate(([0], b_ends[:-1]))
        wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)]
        breaks = [np.zeros(int(0.15 * sample_rate))] * len(breaks)
        wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])

        # Trim excessive silences
        if self.ui.trim_silences_checkbox.isChecked():
            wav = encoder.preprocess_wav(wav)

        # Play it
        wav = wav / np.abs(wav).max() * 0.97
        self.ui.play(wav, sample_rate)

        # Name it (history displayed in combobox)
        # TODO better naming for the combobox items?
        wav_name = str(self.waves_count + 1)

        #Update waves combobox
        self.waves_count += 1
        if self.waves_count > MAX_WAVES:
          self.waves_list.pop()
          self.waves_namelist.pop()
        self.waves_list.insert(0, wav)
        self.waves_namelist.insert(0, wav_name)

        self.ui.waves_cb.disconnect()
        self.ui.waves_cb_model.setStringList(self.waves_namelist)
        self.ui.waves_cb.setCurrentIndex(0)
        self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav)

        # Update current wav
        self.set_current_wav(0)
        
        #Enable replay and save buttons:
        self.ui.replay_wav_button.setDisabled(False)
        self.ui.export_wav_button.setDisabled(False)

        # Compute the embedding
        # TODO: this is problematic with different sampling rates, gotta fix it
        if not encoder.is_loaded():
            self.init_encoder()
        encoder_wav = encoder.preprocess_wav(wav)
        embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True)
        
        # Add the utterance
        name = speaker_name + "_gen_%05d" % np.random.randint(100000)
        utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True)
        self.utterances.add(utterance)
        
        # Plot it
        self.ui.draw_embed(embed, name, "generated")
        self.ui.draw_umap_projections(self.utterances)
        
    def convert(self):
        self.ui.log("Extract PPG and Converting...")
        self.ui.set_loading(1)
        
        # Init
        if self.convertor is None:
            self.init_convertor()
        if self.extractor is None:
            self.init_extractor()
        
        src_wav = self.selected_source_utterance.wav

        # Compute the ppg
        if not self.extractor is None:
            ppg = self.extractor.extract_from_wav(src_wav)
        
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        ref_wav = self.ui.selected_utterance.wav
        # Import necessary dependency of Voice Conversion
        from utils.f0_utils import compute_f0, f02lf0, compute_mean_std, get_converted_lf0uv   
        ref_lf0_mean, ref_lf0_std = compute_mean_std(f02lf0(compute_f0(ref_wav)))
        lf0_uv = get_converted_lf0uv(src_wav, ref_lf0_mean, ref_lf0_std, convert=True)
        min_len = min(ppg.shape[1], len(lf0_uv))
        ppg = ppg[:, :min_len]
        lf0_uv = lf0_uv[:min_len]
        _, mel_pred, att_ws = self.convertor.inference(
            ppg,
            logf0_uv=torch.from_numpy(lf0_uv).unsqueeze(0).float().to(device),
            spembs=torch.from_numpy(self.ui.selected_utterance.embed).unsqueeze(0).to(device),
        )
        mel_pred= mel_pred.transpose(0, 1)
        breaks = [mel_pred.shape[1]]
        mel_pred= mel_pred.detach().cpu().numpy()
        self.ui.draw_spec(mel_pred, "generated")
        self.current_generated = (self.ui.selected_utterance.speaker_name, mel_pred, breaks, None)
        self.ui.set_loading(0)

    def init_extractor(self):
        if self.ui.current_extractor_fpath is None:
            return
        model_fpath = self.ui.current_extractor_fpath
        self.ui.log("Loading the extractor %s... " % model_fpath)
        self.ui.set_loading(1)
        start = timer()
        import ppg_extractor as extractor
        self.extractor = extractor.load_model(model_fpath)
        self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
        self.ui.set_loading(0)

    def init_convertor(self):
        if self.ui.current_convertor_fpath is None:
            return
        model_fpath = self.ui.current_convertor_fpath
        self.ui.log("Loading the convertor %s... " % model_fpath)
        self.ui.set_loading(1)
        start = timer()
        import ppg2mel as convertor
        self.convertor = convertor.load_model( model_fpath)
        self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
        self.ui.set_loading(0)
        
    def init_encoder(self):
        model_fpath = self.ui.current_encoder_fpath
        
        self.ui.log("Loading the encoder %s... " % model_fpath)
        self.ui.set_loading(1)
        start = timer()
        encoder.load_model(model_fpath)
        self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
        self.ui.set_loading(0)

    def init_synthesizer(self):
        model_fpath = self.ui.current_synthesizer_fpath

        self.ui.log("Loading the synthesizer %s... " % model_fpath)
        self.ui.set_loading(1)
        start = timer()
        self.synthesizer = Synthesizer(model_fpath)
        self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
        self.ui.set_loading(0)
           
    def init_vocoder(self):

        global vocoder
        model_fpath = self.ui.current_vocoder_fpath
        # Case of Griffin-lim
        if model_fpath is None:
            return 
        # Sekect vocoder based on model name
        model_config_fpath = None
        if model_fpath.name is not None and model_fpath.name.find("hifigan") > -1:
            vocoder = gan_vocoder
            self.ui.log("set hifigan as vocoder")
            # search a config file
            model_config_fpaths = list(model_fpath.parent.rglob("*.json"))
            if self.vc_mode and self.ui.current_extractor_fpath is None:
                return
            if len(model_config_fpaths) > 0:
                model_config_fpath = model_config_fpaths[0]
        elif model_fpath.name is not None and model_fpath.name.find("fregan") > -1:
            vocoder = fgan_vocoder
            self.ui.log("set fregan as vocoder")
            # search a config file
            model_config_fpaths = list(model_fpath.parent.rglob("*.json"))
            if self.vc_mode and self.ui.current_extractor_fpath is None:
                return
            if len(model_config_fpaths) > 0:
                model_config_fpath = model_config_fpaths[0]
        else:
            vocoder = rnn_vocoder
            self.ui.log("set wavernn as vocoder")
    
        self.ui.log("Loading the vocoder %s... " % model_fpath)
        self.ui.set_loading(1)
        start = timer()
        vocoder.load_model(model_fpath, model_config_fpath)
        self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
        self.ui.set_loading(0)

    def update_seed_textbox(self):
       self.ui.update_seed_textbox()