File size: 2,444 Bytes
d59aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Function

def tile(x, count, dim=0):
    """
    Tiles x on dimension dim count times.
    """
    perm = list(range(len(x.size())))
    if dim != 0:
        perm[0], perm[dim] = perm[dim], perm[0]
        x = x.permute(perm).contiguous()
    out_size = list(x.size())
    out_size[0] *= count
    batch = x.size(0)
    x = x.view(batch, -1) \
         .transpose(0, 1) \
         .repeat(count, 1) \
         .transpose(0, 1) \
         .contiguous() \
         .view(*out_size)
    if dim != 0:
        x = x.permute(perm).contiguous()
    return x

class Linear(torch.nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
        super(Linear, self).__init__()
        self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)

        torch.nn.init.xavier_uniform_(
            self.linear_layer.weight,
            gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, x):
        return self.linear_layer(x)

class Conv1d(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
                 padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
        super(Conv1d, self).__init__()
        if padding is None:
            assert(kernel_size % 2 == 1)
            padding = int(dilation * (kernel_size - 1)/2)
        
        self.conv = torch.nn.Conv1d(in_channels, out_channels,
                                    kernel_size=kernel_size, stride=stride,
                                    padding=padding, dilation=dilation,
                                    bias=bias)
        torch.nn.init.xavier_uniform_(
            self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))

    def forward(self, x):
        # x: BxDxT
        return self.conv(x)



def tile(x, count, dim=0):
    """
    Tiles x on dimension dim count times.
    """
    perm = list(range(len(x.size())))
    if dim != 0:
        perm[0], perm[dim] = perm[dim], perm[0]
        x = x.permute(perm).contiguous()
    out_size = list(x.size())
    out_size[0] *= count
    batch = x.size(0)
    x = x.view(batch, -1) \
         .transpose(0, 1) \
         .repeat(count, 1) \
         .transpose(0, 1) \
         .contiguous() \
         .view(*out_size)
    if dim != 0:
        x = x.permute(perm).contiguous()
    return x