Spaces:
Runtime error
Runtime error
File size: 14,341 Bytes
d59aeff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import torch
import torch.nn as nn
from .sublayer.global_style_token import GlobalStyleToken
from .sublayer.pre_net import PreNet
from .sublayer.cbhg import CBHG
from .sublayer.lsa import LSA
from .base import Base
from synthesizer.gst_hyperparameters import GSTHyperparameters as gst_hp
from synthesizer.hparams import hparams
class Encoder(nn.Module):
def __init__(self, num_chars, embed_dims=512, encoder_dims=256, K=5, num_highways=4, dropout=0.5):
""" Encoder for SV2TTS
Args:
num_chars (int): length of symbols
embed_dims (int, optional): embedding dim for input texts. Defaults to 512.
encoder_dims (int, optional): output dim for encoder. Defaults to 256.
K (int, optional): _description_. Defaults to 5.
num_highways (int, optional): _description_. Defaults to 4.
dropout (float, optional): _description_. Defaults to 0.5.
"""
super().__init__()
self.embedding = nn.Embedding(num_chars, embed_dims)
self.pre_net = PreNet(embed_dims, fc1_dims=encoder_dims, fc2_dims=encoder_dims,
dropout=dropout)
self.cbhg = CBHG(K=K, in_channels=encoder_dims, channels=encoder_dims,
proj_channels=[encoder_dims, encoder_dims],
num_highways=num_highways)
def forward(self, x):
"""forward pass for encoder
Args:
x (2D tensor with size `[batch_size, text_num_chars]`): input texts list
Returns:
3D tensor with size `[batch_size, text_num_chars, encoder_dims]`
"""
x = self.embedding(x) # return: [batch_size, text_num_chars, tts_embed_dims]
x = self.pre_net(x) # return: [batch_size, text_num_chars, encoder_dims]
x.transpose_(1, 2) # return: [batch_size, encoder_dims, text_num_chars]
return self.cbhg(x) # return: [batch_size, text_num_chars, encoder_dims]
class Decoder(nn.Module):
# Class variable because its value doesn't change between classes
# yet ought to be scoped by class because its a property of a Decoder
max_r = 20
def __init__(self, n_mels, input_dims, decoder_dims, lstm_dims,
dropout, speaker_embedding_size):
super().__init__()
self.register_buffer("r", torch.tensor(1, dtype=torch.int))
self.n_mels = n_mels
self.prenet = PreNet(n_mels, fc1_dims=decoder_dims * 2, fc2_dims=decoder_dims * 2,
dropout=dropout)
self.attn_net = LSA(decoder_dims)
if hparams.use_gst:
speaker_embedding_size += gst_hp.E
self.attn_rnn = nn.GRUCell(input_dims + decoder_dims * 2, decoder_dims)
self.rnn_input = nn.Linear(input_dims + decoder_dims, lstm_dims)
self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims)
self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims)
self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False)
self.stop_proj = nn.Linear(input_dims + lstm_dims, 1)
def zoneout(self, prev, current, device, p=0.1):
mask = torch.zeros(prev.size(),device=device).bernoulli_(p)
return prev * mask + current * (1 - mask)
def forward(self, encoder_seq, encoder_seq_proj, prenet_in,
hidden_states, cell_states, context_vec, times, chars):
"""_summary_
Args:
encoder_seq (3D tensor `[batch_size, text_num_chars, project_dim(default to 512)]`): _description_
encoder_seq_proj (3D tensor `[batch_size, text_num_chars, decoder_dims(default to 128)]`): _description_
prenet_in (2D tensor `[batch_size, n_mels]`): _description_
hidden_states (_type_): _description_
cell_states (_type_): _description_
context_vec (2D tensor `[batch_size, project_dim(default to 512)]`): _description_
times (int): the number of times runned
chars (2D tensor with size `[batch_size, text_num_chars]`): original texts list input
"""
# Need this for reshaping mels
batch_size = encoder_seq.size(0)
device = encoder_seq.device
# Unpack the hidden and cell states
attn_hidden, rnn1_hidden, rnn2_hidden = hidden_states
rnn1_cell, rnn2_cell = cell_states
# PreNet for the Attention RNN
prenet_out = self.prenet(prenet_in) # return: `[batch_size, decoder_dims * 2(256)]`
# Compute the Attention RNN hidden state
attn_rnn_in = torch.cat([context_vec, prenet_out], dim=-1) # `[batch_size, project_dim + decoder_dims * 2 (768)]`
attn_hidden = self.attn_rnn(attn_rnn_in.squeeze(1), attn_hidden) # `[batch_size, decoder_dims (128)]`
# Compute the attention scores
scores = self.attn_net(encoder_seq_proj, attn_hidden, times, chars)
# Dot product to create the context vector
context_vec = scores @ encoder_seq
context_vec = context_vec.squeeze(1)
# Concat Attention RNN output w. Context Vector & project
x = torch.cat([context_vec, attn_hidden], dim=1) # `[batch_size, project_dim + decoder_dims (630)]`
x = self.rnn_input(x) # `[batch_size, lstm_dims(1024)]`
# Compute first Residual RNN, training with fixed zoneout rate 0.1
rnn1_hidden_next, rnn1_cell = self.res_rnn1(x, (rnn1_hidden, rnn1_cell)) # `[batch_size, lstm_dims(1024)]`
if self.training:
rnn1_hidden = self.zoneout(rnn1_hidden, rnn1_hidden_next,device=device)
else:
rnn1_hidden = rnn1_hidden_next
x = x + rnn1_hidden
# Compute second Residual RNN
rnn2_hidden_next, rnn2_cell = self.res_rnn2(x, (rnn2_hidden, rnn2_cell)) # `[batch_size, lstm_dims(1024)]`
if self.training:
rnn2_hidden = self.zoneout(rnn2_hidden, rnn2_hidden_next, device=device)
else:
rnn2_hidden = rnn2_hidden_next
x = x + rnn2_hidden
# Project Mels
mels = self.mel_proj(x) # `[batch_size, 1600]`
mels = mels.view(batch_size, self.n_mels, self.max_r)[:, :, :self.r] # `[batch_size, n_mels, r]`
hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
cell_states = (rnn1_cell, rnn2_cell)
# Stop token prediction
s = torch.cat((x, context_vec), dim=1)
s = self.stop_proj(s)
stop_tokens = torch.sigmoid(s)
return mels, scores, hidden_states, cell_states, context_vec, stop_tokens
class Tacotron(Base):
def __init__(self, embed_dims, num_chars, encoder_dims, decoder_dims, n_mels,
fft_bins, postnet_dims, encoder_K, lstm_dims, postnet_K, num_highways,
dropout, stop_threshold, speaker_embedding_size):
super().__init__(stop_threshold)
self.n_mels = n_mels
self.lstm_dims = lstm_dims
self.encoder_dims = encoder_dims
self.decoder_dims = decoder_dims
self.speaker_embedding_size = speaker_embedding_size
self.encoder = Encoder(num_chars, embed_dims, encoder_dims,
encoder_K, num_highways, dropout)
self.project_dims = encoder_dims + speaker_embedding_size
if hparams.use_gst:
self.project_dims += gst_hp.E
self.encoder_proj = nn.Linear(self.project_dims, decoder_dims, bias=False)
if hparams.use_gst:
self.gst = GlobalStyleToken(speaker_embedding_size)
self.decoder = Decoder(n_mels, self.project_dims, decoder_dims, lstm_dims,
dropout, speaker_embedding_size)
self.postnet = CBHG(postnet_K, n_mels, postnet_dims,
[postnet_dims, fft_bins], num_highways)
self.post_proj = nn.Linear(postnet_dims, fft_bins, bias=False)
@staticmethod
def _concat_speaker_embedding(outputs, speaker_embeddings):
speaker_embeddings_ = speaker_embeddings.expand(
outputs.size(0), outputs.size(1), -1)
outputs = torch.cat([outputs, speaker_embeddings_], dim=-1)
return outputs
@staticmethod
def _add_speaker_embedding(x, speaker_embedding):
"""Add speaker embedding
This concats the speaker embedding for each char in the encoder output
Args:
x (3D tensor with size `[batch_size, text_num_chars, encoder_dims]`): the encoder output
speaker_embedding (2D tensor `[batch_size, speaker_embedding_size]`): the speaker embedding
Returns:
3D tensor with size `[batch_size, text_num_chars, encoder_dims+speaker_embedding_size]`
"""
# Save the dimensions as human-readable names
batch_size = x.size()[0]
text_num_chars = x.size()[1]
# Start by making a copy of each speaker embedding to match the input text length
# The output of this has size (batch_size, text_num_chars * speaker_embedding_size)
speaker_embedding_size = speaker_embedding.size()[1]
e = speaker_embedding.repeat_interleave(text_num_chars, dim=1)
# Reshape it and transpose
e = e.reshape(batch_size, speaker_embedding_size, text_num_chars)
e = e.transpose(1, 2)
# Concatenate the tiled speaker embedding with the encoder output
x = torch.cat((x, e), 2)
return x
def forward(self, texts, mels, speaker_embedding, steps=2000, style_idx=0, min_stop_token=5):
"""Forward pass for Tacotron
Args:
texts (`[batch_size, text_num_chars]`): input texts list
mels (`[batch_size, varied_mel_lengths, steps]`): mels for comparison (training only)
speaker_embedding (`[batch_size, speaker_embedding_size(default to 256)]`): referring embedding.
steps (int, optional): . Defaults to 2000.
style_idx (int, optional): GST style selected. Defaults to 0.
min_stop_token (int, optional): decoder min_stop_token. Defaults to 5.
"""
device = texts.device # use same device as parameters
if self.training:
self.step += 1
batch_size, _, steps = mels.size()
else:
batch_size, _ = texts.size()
# Initialise all hidden states and pack into tuple
attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
# Initialise all lstm cell states and pack into tuple
rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
cell_states = (rnn1_cell, rnn2_cell)
# <GO> Frame for start of decoder loop
go_frame = torch.zeros(batch_size, self.n_mels, device=device)
# SV2TTS: Run the encoder with the speaker embedding
# The projection avoids unnecessary matmuls in the decoder loop
encoder_seq = self.encoder(texts)
encoder_seq = self._add_speaker_embedding(encoder_seq, speaker_embedding)
if hparams.use_gst and self.gst is not None:
if self.training:
style_embed = self.gst(speaker_embedding, speaker_embedding) # for training, speaker embedding can represent both style inputs and referenced
# style_embed = style_embed.expand_as(encoder_seq)
# encoder_seq = torch.cat((encoder_seq, style_embed), 2)
elif style_idx >= 0 and style_idx < 10:
query = torch.zeros(1, 1, self.gst.stl.attention.num_units)
if device.type == 'cuda':
query = query.cuda()
gst_embed = torch.tanh(self.gst.stl.embed)
key = gst_embed[style_idx].unsqueeze(0).expand(1, -1, -1)
style_embed = self.gst.stl.attention(query, key)
else:
speaker_embedding_style = torch.zeros(speaker_embedding.size()[0], 1, self.speaker_embedding_size).to(device)
style_embed = self.gst(speaker_embedding_style, speaker_embedding)
encoder_seq = self._concat_speaker_embedding(encoder_seq, style_embed) # return: [batch_size, text_num_chars, project_dims]
encoder_seq_proj = self.encoder_proj(encoder_seq) # return: [batch_size, text_num_chars, decoder_dims]
# Need a couple of lists for outputs
mel_outputs, attn_scores, stop_outputs = [], [], []
# Need an initial context vector
context_vec = torch.zeros(batch_size, self.project_dims, device=device)
# Run the decoder loop
for t in range(0, steps, self.r):
if self.training:
prenet_in = mels[:, :, t -1] if t > 0 else go_frame
else:
prenet_in = mel_outputs[-1][:, :, -1] if t > 0 else go_frame
mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
hidden_states, cell_states, context_vec, t, texts)
mel_outputs.append(mel_frames)
attn_scores.append(scores)
stop_outputs.extend([stop_tokens] * self.r)
if not self.training and (stop_tokens * 10 > min_stop_token).all() and t > 10: break
# Concat the mel outputs into sequence
mel_outputs = torch.cat(mel_outputs, dim=2)
# Post-Process for Linear Spectrograms
postnet_out = self.postnet(mel_outputs)
linear = self.post_proj(postnet_out)
linear = linear.transpose(1, 2)
# For easy visualisation
attn_scores = torch.cat(attn_scores, 1)
# attn_scores = attn_scores.cpu().data.numpy()
stop_outputs = torch.cat(stop_outputs, 1)
if self.training:
self.train()
return mel_outputs, linear, attn_scores, stop_outputs
def generate(self, x, speaker_embedding, steps=2000, style_idx=0, min_stop_token=5):
self.eval()
mel_outputs, linear, attn_scores, _ = self.forward(x, None, speaker_embedding, steps, style_idx, min_stop_token)
return mel_outputs, linear, attn_scores
|