File size: 9,186 Bytes
b128c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Introduction

<div>
<a target="_blank" href="https://discord.gg/Es5qTB9BcN">
<img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
</a>
<a target="_blank" href="http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=jCKlUP7QgSm9kh95UlBoYv6s1I-Apl1M&authKey=xI5ttVAp3do68IpEYEalwXSYZFdfxZSkah%2BctF5FIMyN2NqAa003vFtLqJyAVRfF&noverify=0&group_code=593946093">
<img alt="QQ" src="https://img.shields.io/badge/QQ Group-%2312B7F5?logo=tencent-qq&logoColor=white&style=flat-square"/>
</a>
<a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
<img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
</a>
</div>

!!! warning
    We assume no responsibility for any illegal use of the codebase. Please refer to the local laws regarding DMCA (Digital Millennium Copyright Act) and other relevant laws in your area. <br/>
    This codebase and all models are released under the CC-BY-NC-SA-4.0 license.

<p align="center">
   <img src="../assets/figs/diagram.png" width="75%">
</p>

## Requirements

- GPU Memory: 4GB (for inference), 8GB (for fine-tuning)
- System: Linux, Windows

## Windows Setup

Professional Windows users may consider using WSL2 or Docker to run the codebase.

```bash
# Create a python 3.10 virtual environment, you can also use virtualenv
conda create -n fish-speech python=3.10
conda activate fish-speech

# Install pytorch
pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121

# Install fish-speech
pip3 install -e .

# (Enable acceleration) Install triton-windows
pip install https://github.com/AnyaCoder/fish-speech/releases/download/v0.1.0/triton_windows-0.1.0-py3-none-any.whl
```

Non-professional Windows users can consider the following basic methods to run the project without a Linux environment (with model compilation capabilities, i.e., `torch.compile`):

1. Extract the project package.
2. Click `install_env.bat` to install the environment.
3. If you want to enable compilation acceleration, follow this step:
    1. Download the LLVM compiler from the following links:
        - [LLVM-17.0.6 (Official Site Download)](https://huggingface.co/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
        - [LLVM-17.0.6 (Mirror Site Download)](https://hf-mirror.com/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
        - After downloading `LLVM-17.0.6-win64.exe`, double-click to install, select an appropriate installation location, and most importantly, check the `Add Path to Current User` option to add the environment variable.
        - Confirm that the installation is complete.
    2. Download and install the Microsoft Visual C++ Redistributable to solve potential .dll missing issues:
        - [MSVC++ 14.40.33810.0 Download](https://aka.ms/vs/17/release/vc_redist.x64.exe)
    3. Download and install Visual Studio Community Edition to get MSVC++ build tools and resolve LLVM's header file dependencies:
        - [Visual Studio Download](https://visualstudio.microsoft.com/zh-hans/downloads/)
        - After installing Visual Studio Installer, download Visual Studio Community 2022.
        - As shown below, click the `Modify` button and find the `Desktop development with C++` option to select and download.
    4. Download and install [CUDA Toolkit 12.x](https://developer.nvidia.com/cuda-12-1-0-download-archive?target_os=Windows&target_arch=x86_64)
4. Double-click `start.bat` to open the training inference WebUI management interface. If needed, you can modify the `API_FLAGS` as prompted below.

!!! info "Optional"

	Want to start the inference WebUI?

    Edit the `API_FLAGS.txt` file in the project root directory and modify the first three lines as follows:
    ```
     --infer
     # --api
     # --listen ...
     ...
    ```

!!! info "Optional"

	Want to start the API server?

    Edit the `API_FLAGS.txt` file in the project root directory and modify the first three lines as follows:

    ```
    # --infer
    --api
    --listen ...
    ...
    ```

!!! info "Optional"

	Double-click `run_cmd.bat` to enter the conda/python command line environment of this project.

## Linux Setup

See [pyproject.toml](../../pyproject.toml) for details.
```bash
# Create a python 3.10 virtual environment, you can also use virtualenv
conda create -n fish-speech python=3.10
conda activate fish-speech

# Install pytorch
pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1

# (Ubuntu / Debian User) Install sox + ffmpeg
apt install libsox-dev ffmpeg 

# (Ubuntu / Debian User) Install pyaudio 
apt install build-essential \
    cmake \
    libasound-dev \
    portaudio19-dev \
    libportaudio2 \
    libportaudiocpp0
    
# Install fish-speech
pip3 install -e .[stable]
```

## macos setup

If you want to perform inference on MPS, please add the `--device mps` flag.
Please refer to [this PR](https://github.com/fishaudio/fish-speech/pull/461#issuecomment-2284277772) for a comparison of inference speeds.

!!! warning
    The `compile` option is not officially supported on Apple Silicon devices, so there is no guarantee that inference speed will improve.

```bash
# create a python 3.10 virtual environment, you can also use virtualenv
conda create -n fish-speech python=3.10
conda activate fish-speech
# install pytorch
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
# install fish-speech
pip install -e .[stable]
```

## Docker Setup

1. Install NVIDIA Container Toolkit:

    To use GPU for model training and inference in Docker, you need to install NVIDIA Container Toolkit:

    For Ubuntu users:

    ```bash
    # Add repository
    curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
        && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
            sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
            sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
    # Install nvidia-container-toolkit
    sudo apt-get update
    sudo apt-get install -y nvidia-container-toolkit
    # Restart Docker service
    sudo systemctl restart docker
    ```

    For users of other Linux distributions, please refer to: [NVIDIA Container Toolkit Install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).

2. Pull and run the fish-speech image

    ```shell
    # Pull the image
    docker pull fishaudio/fish-speech:latest-dev
    # Run the image
    docker run -it \
        --name fish-speech \
        --gpus all \
        -p 7860:7860 \
        fishaudio/fish-speech:latest-dev \
        zsh
    # If you need to use a different port, please modify the -p parameter to YourPort:7860
    ```

3. Download model dependencies

    Make sure you are in the terminal inside the docker container, then download the required `vqgan` and `llama` models from our huggingface repository.

    ```bash
    huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
    ```

4. Configure environment variables and access WebUI

    In the terminal inside the docker container, enter `export GRADIO_SERVER_NAME="0.0.0.0"` to allow external access to the gradio service inside docker.
    Then in the terminal inside the docker container, enter `python tools/run_webui.py` to start the WebUI service.

    If you're using WSL or MacOS, visit [http://localhost:7860](http://localhost:7860) to open the WebUI interface.

    If it's deployed on a server, replace localhost with your server's IP.

## Changelog

- 2024/09/10: Updated Fish-Speech to 1.4 version, with an increase in dataset size and a change in the quantizer's n_groups from 4 to 8.
- 2024/07/02: Updated Fish-Speech to 1.2 version, remove VITS Decoder, and greatly enhanced zero-shot ability.
- 2024/05/10: Updated Fish-Speech to 1.1 version, implement VITS decoder to reduce WER and improve timbre similarity.
- 2024/04/22: Finished Fish-Speech 1.0 version, significantly modified VQGAN and LLAMA models.
- 2023/12/28: Added `lora` fine-tuning support.
- 2023/12/27: Add `gradient checkpointing`, `causual sampling`, and `flash-attn` support.
- 2023/12/19: Updated webui and HTTP API.
- 2023/12/18: Updated fine-tuning documentation and related examples.
- 2023/12/17: Updated `text2semantic` model, supporting phoneme-free mode.
- 2023/12/13: Beta version released, includes VQGAN model and a language model based on LLAMA (phoneme support only).

## Acknowledgements

- [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
- [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
- [GPT VITS](https://github.com/innnky/gpt-vits)
- [MQTTS](https://github.com/b04901014/MQTTS)
- [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
- [Transformers](https://github.com/huggingface/transformers)
- [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)