File size: 7,709 Bytes
b128c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import io
import os
import time
from http import HTTPStatus

import numpy as np
import ormsgpack
import soundfile as sf
import torch
from kui.asgi import HTTPException, HttpView, JSONResponse, StreamResponse, request
from loguru import logger

from tools.schema import (
    ServeASRRequest,
    ServeASRResponse,
    ServeChatRequest,
    ServeTTSRequest,
    ServeVQGANDecodeRequest,
    ServeVQGANDecodeResponse,
    ServeVQGANEncodeRequest,
    ServeVQGANEncodeResponse,
)
from tools.server.agent import get_response_generator
from tools.server.api_utils import (
    buffer_to_async_generator,
    get_content_type,
    inference_async,
)
from tools.server.inference import inference_wrapper as inference
from tools.server.model_manager import ModelManager
from tools.server.model_utils import batch_asr, cached_vqgan_batch_encode, vqgan_decode

MAX_NUM_SAMPLES = int(os.getenv("NUM_SAMPLES", 1))


class HealthView(HttpView):
    """
    Return the health status of the server.
    """

    @classmethod
    async def post(cls):
        return JSONResponse({"status": "ok"})


class VQGANEncodeView(HttpView):
    """
    Encode the audio into symbolic tokens.
    """

    @classmethod
    async def post(cls):
        # Decode the request
        payload = await request.data()
        req = ServeVQGANEncodeRequest(**payload)

        # Get the model from the app
        model_manager: ModelManager = request.app.state.model_manager
        decoder_model = model_manager.decoder_model

        # Encode the audio
        start_time = time.time()
        tokens = cached_vqgan_batch_encode(decoder_model, req.audios)
        logger.info(
            f"[EXEC] VQGAN encode time: {(time.time() - start_time) * 1000:.2f}ms"
        )

        # Return the response
        return ormsgpack.packb(
            ServeVQGANEncodeResponse(tokens=[i.tolist() for i in tokens]),
            option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
        )


class VQGANDecodeView(HttpView):
    """
    Decode the symbolic tokens into audio.
    """

    @classmethod
    async def post(cls):
        # Decode the request
        payload = await request.data()
        req = ServeVQGANDecodeRequest(**payload)

        # Get the model from the app
        model_manager: ModelManager = request.app.state.model_manager
        decoder_model = model_manager.decoder_model

        # Decode the audio
        tokens = [torch.tensor(token, dtype=torch.int) for token in req.tokens]
        start_time = time.time()
        audios = vqgan_decode(decoder_model, tokens)
        logger.info(
            f"[EXEC] VQGAN decode time: {(time.time() - start_time) * 1000:.2f}ms"
        )
        audios = [audio.astype(np.float16).tobytes() for audio in audios]

        # Return the response
        return ormsgpack.packb(
            ServeVQGANDecodeResponse(audios=audios),
            option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
        )


class ASRView(HttpView):
    """
    Perform automatic speech recognition on the audio.
    """

    @classmethod
    async def post(cls):
        # Decode the request
        payload = await request.data()
        req = ServeASRRequest(**payload)

        # Get the model from the app
        model_manager: ModelManager = request.app.state.model_manager
        asr_model = model_manager.asr_model
        lock = request.app.state.lock

        # Perform ASR
        start_time = time.time()
        audios = [np.frombuffer(audio, dtype=np.float16) for audio in req.audios]
        audios = [torch.from_numpy(audio).float() for audio in audios]

        if any(audios.shape[-1] >= 30 * req.sample_rate for audios in audios):
            raise HTTPException(status_code=400, content="Audio length is too long")

        transcriptions = batch_asr(
            asr_model, lock, audios=audios, sr=req.sample_rate, language=req.language
        )
        logger.info(f"[EXEC] ASR time: {(time.time() - start_time) * 1000:.2f}ms")

        # Return the response
        return ormsgpack.packb(
            ServeASRResponse(transcriptions=transcriptions),
            option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
        )


class TTSView(HttpView):
    """
    Perform text-to-speech on the input text.
    """

    @classmethod
    async def post(cls):
        # Decode the request
        payload = await request.data()
        req = ServeTTSRequest(**payload)

        # Get the model from the app
        app_state = request.app.state
        model_manager: ModelManager = app_state.model_manager
        engine = model_manager.tts_inference_engine
        sample_rate = engine.decoder_model.spec_transform.sample_rate

        # Check if the text is too long
        if app_state.max_text_length > 0 and len(req.text) > app_state.max_text_length:
            raise HTTPException(
                HTTPStatus.BAD_REQUEST,
                content=f"Text is too long, max length is {app_state.max_text_length}",
            )

        # Check if streaming is enabled
        if req.streaming and req.format != "wav":
            raise HTTPException(
                HTTPStatus.BAD_REQUEST,
                content="Streaming only supports WAV format",
            )

        # Perform TTS
        if req.streaming:
            return StreamResponse(
                iterable=inference_async(req, engine),
                headers={
                    "Content-Disposition": f"attachment; filename=audio.{req.format}",
                },
                content_type=get_content_type(req.format),
            )
        else:
            fake_audios = next(inference(req, engine))
            buffer = io.BytesIO()
            sf.write(
                buffer,
                fake_audios,
                sample_rate,
                format=req.format,
            )

            return StreamResponse(
                iterable=buffer_to_async_generator(buffer.getvalue()),
                headers={
                    "Content-Disposition": f"attachment; filename=audio.{req.format}",
                },
                content_type=get_content_type(req.format),
            )


class ChatView(HttpView):
    """
    Perform chatbot inference on the input text.
    """

    @classmethod
    async def post(cls):
        # Decode the request
        payload = await request.data()
        req = ServeChatRequest(**payload)

        # Check that the number of samples requested is correct
        if req.num_samples < 1 or req.num_samples > MAX_NUM_SAMPLES:
            raise HTTPException(
                HTTPStatus.BAD_REQUEST,
                content=f"Number of samples must be between 1 and {MAX_NUM_SAMPLES}",
            )

        # Get the type of content provided
        content_type = request.headers.get("Content-Type", "application/json")
        json_mode = "application/json" in content_type

        # Get the models from the app
        model_manager: ModelManager = request.app.state.model_manager
        llama_queue = model_manager.llama_queue
        tokenizer = model_manager.tokenizer
        config = model_manager.config

        device = request.app.state.device

        # Get the response generators
        response_generator = get_response_generator(
            llama_queue, tokenizer, config, req, device, json_mode
        )

        # Return the response in the correct format
        if req.streaming is False:
            result = response_generator()
            if json_mode:
                return JSONResponse(result.model_dump())
            else:
                return ormsgpack.packb(result, option=ormsgpack.OPT_SERIALIZE_PYDANTIC)

        return StreamResponse(
            iterable=response_generator(), content_type="text/event-stream"
        )