Spaces:
Running
Running
import queue | |
from fish_speech.conversation import Conversation, Message | |
from fish_speech.tokenizer import IM_END_TOKEN | |
from tools.llama.generate import GenerateRequest | |
def prepare_messages(request, tokenizer, config): | |
""" | |
Reorganise the provided list of messages into a conversation. | |
Encode the conversation for inference. | |
""" | |
# Convert the messages to ConversationMessage objects | |
messages = [msg.to_conversation_message() for msg in request.messages] | |
if len(messages) < 1: | |
raise ValueError("At least one message is required") | |
# Check the last message to determine the next step | |
last_role = messages[-1].role | |
match last_role: | |
case "user": | |
# The last message is from the user, ask the assistant to respond with a new message | |
messages.append( | |
Message(role="assistant", parts=[], add_im_end=False, modality="voice") | |
) | |
case "raw": | |
# The last message is raw text, ask the assistant to complete it | |
messages[-1].add_im_start = False | |
messages[-1].add_im_end = False | |
messages[-1].modality = "voice" | |
case "assistant": | |
# The last message is from the assistant, ask the assistant to continue | |
messages[-1].add_im_end = False | |
case _: | |
# We expect it to be assistant if not user or raw | |
raise ValueError("The last message must be from the assistant, user or raw") | |
# Create a conversation object and encode it for inference | |
conv = Conversation(messages=messages) | |
prompt = conv.encode_for_inference( | |
tokenizer=tokenizer, num_codebooks=config.num_codebooks | |
) | |
im_end_id = tokenizer.get_token_id(IM_END_TOKEN) | |
return prompt, im_end_id | |
def create_generation_request(prompt, request, im_end_id, device): | |
""" | |
Convert the request into a dictionary that can be sent to the model for generation. | |
""" | |
req = { | |
"prompt": prompt.to(device), | |
"max_new_tokens": request.max_new_tokens, | |
"im_end_id": im_end_id, | |
"temperature": request.temperature, | |
"top_p": request.top_p, | |
"repetition_penalty": request.repetition_penalty, | |
"num_samples": request.num_samples, | |
"early_stop_threshold": request.early_stop_threshold, | |
} | |
return req | |
def send_generation_request(input_queue, req): | |
""" | |
Send the generation request to the model and return a queue to get the response. | |
""" | |
response_queue = queue.Queue() | |
input_queue.put(GenerateRequest(req, response_queue)) | |
return response_queue | |