fish-audio-t / tools /server /agent /pre_generation_utils.py
kiylu's picture
add project files
b128c76
import queue
from fish_speech.conversation import Conversation, Message
from fish_speech.tokenizer import IM_END_TOKEN
from tools.llama.generate import GenerateRequest
def prepare_messages(request, tokenizer, config):
"""
Reorganise the provided list of messages into a conversation.
Encode the conversation for inference.
"""
# Convert the messages to ConversationMessage objects
messages = [msg.to_conversation_message() for msg in request.messages]
if len(messages) < 1:
raise ValueError("At least one message is required")
# Check the last message to determine the next step
last_role = messages[-1].role
match last_role:
case "user":
# The last message is from the user, ask the assistant to respond with a new message
messages.append(
Message(role="assistant", parts=[], add_im_end=False, modality="voice")
)
case "raw":
# The last message is raw text, ask the assistant to complete it
messages[-1].add_im_start = False
messages[-1].add_im_end = False
messages[-1].modality = "voice"
case "assistant":
# The last message is from the assistant, ask the assistant to continue
messages[-1].add_im_end = False
case _:
# We expect it to be assistant if not user or raw
raise ValueError("The last message must be from the assistant, user or raw")
# Create a conversation object and encode it for inference
conv = Conversation(messages=messages)
prompt = conv.encode_for_inference(
tokenizer=tokenizer, num_codebooks=config.num_codebooks
)
im_end_id = tokenizer.get_token_id(IM_END_TOKEN)
return prompt, im_end_id
def create_generation_request(prompt, request, im_end_id, device):
"""
Convert the request into a dictionary that can be sent to the model for generation.
"""
req = {
"prompt": prompt.to(device),
"max_new_tokens": request.max_new_tokens,
"im_end_id": im_end_id,
"temperature": request.temperature,
"top_p": request.top_p,
"repetition_penalty": request.repetition_penalty,
"num_samples": request.num_samples,
"early_stop_threshold": request.early_stop_threshold,
}
return req
def send_generation_request(input_queue, req):
"""
Send the generation request to the model and return a queue to get the response.
"""
response_queue = queue.Queue()
input_queue.put(GenerateRequest(req, response_queue))
return response_queue