Spaces:
Running
Running
import torch | |
from funasr import AutoModel | |
from loguru import logger | |
from tools.inference_engine import TTSInferenceEngine | |
from tools.llama.generate import ( | |
launch_thread_safe_queue, | |
launch_thread_safe_queue_agent, | |
) | |
from tools.schema import ServeTTSRequest | |
from tools.server.inference import inference_wrapper as inference | |
from tools.vqgan.inference import load_model as load_decoder_model | |
ASR_MODEL_NAME = "iic/SenseVoiceSmall" | |
class ModelManager: | |
def __init__( | |
self, | |
mode: str, | |
device: str, | |
half: bool, | |
compile: bool, | |
asr_enabled: bool, | |
llama_checkpoint_path: str, | |
decoder_checkpoint_path: str, | |
decoder_config_name: str, | |
) -> None: | |
self.mode = mode | |
self.device = device | |
self.half = half | |
self.compile = compile | |
self.precision = torch.half if half else torch.bfloat16 | |
# Check if MPS or CUDA is available | |
if torch.backends.mps.is_available(): | |
self.device = "mps" | |
logger.info("mps is available, running on mps.") | |
elif not torch.cuda.is_available(): | |
self.device = "cpu" | |
logger.info("CUDA is not available, running on CPU.") | |
# Load the ASR model if enabled | |
if asr_enabled: | |
self.load_asr_model(self.device) | |
# Load the TTS models | |
self.load_llama_model( | |
llama_checkpoint_path, self.device, self.precision, self.compile, self.mode | |
) | |
self.load_decoder_model( | |
decoder_config_name, decoder_checkpoint_path, self.device | |
) | |
self.tts_inference_engine = TTSInferenceEngine( | |
llama_queue=self.llama_queue, | |
decoder_model=self.decoder_model, | |
precision=self.precision, | |
compile=self.compile, | |
) | |
# Warm up the models | |
if self.mode == "tts": | |
self.warm_up(self.tts_inference_engine) | |
def load_asr_model(self, device, hub="ms") -> None: | |
self.asr_model = AutoModel( | |
model=ASR_MODEL_NAME, | |
device=device, | |
disable_pbar=True, | |
hub=hub, | |
) | |
logger.info("ASR model loaded.") | |
def load_llama_model( | |
self, checkpoint_path, device, precision, compile, mode | |
) -> None: | |
if mode == "tts": | |
self.llama_queue = launch_thread_safe_queue( | |
checkpoint_path=checkpoint_path, | |
device=device, | |
precision=precision, | |
compile=compile, | |
) | |
elif mode == "agent": | |
self.llama_queue, self.tokenizer, self.config = ( | |
launch_thread_safe_queue_agent( | |
checkpoint_path=checkpoint_path, | |
device=device, | |
precision=precision, | |
compile=compile, | |
) | |
) | |
else: | |
raise ValueError(f"Invalid mode: {mode}") | |
logger.info("LLAMA model loaded.") | |
def load_decoder_model(self, config_name, checkpoint_path, device) -> None: | |
self.decoder_model = load_decoder_model( | |
config_name=config_name, | |
checkpoint_path=checkpoint_path, | |
device=device, | |
) | |
logger.info("Decoder model loaded.") | |
def warm_up(self, tts_inference_engine) -> None: | |
request = ServeTTSRequest( | |
text="Hello world.", | |
references=[], | |
reference_id=None, | |
max_new_tokens=1024, | |
chunk_length=200, | |
top_p=0.7, | |
repetition_penalty=1.2, | |
temperature=0.7, | |
format="wav", | |
) | |
list(inference(request, tts_inference_engine)) | |
logger.info("Models warmed up.") | |