model use
Browse files- app.py +31 -2
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,7 +1,36 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
5 |
|
6 |
-
demo = gr.Interface(fn=
|
7 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
import re
|
5 |
+
|
6 |
+
pipe = pipeline("summarization", model="kkasiviswanath/bart_summarizer_deploy_v1")
|
7 |
+
|
8 |
+
def summarize_email(email_body, pipe):
|
9 |
+
# Tokenize the input text
|
10 |
+
input_tokens = pipe.tokenizer(email_body, return_tensors='pt', truncation=False)
|
11 |
+
input_length = input_tokens['input_ids'].shape[1]
|
12 |
+
|
13 |
+
# Adjust max_length to be a certain percentage of the input length
|
14 |
+
adjusted_max_length = max(3, int(input_length * 0.6)) # Ensure a minimum length
|
15 |
+
# Generate summary with dynamic max_length
|
16 |
+
gen_kwargs = {
|
17 |
+
"length_penalty": 2.0,
|
18 |
+
"num_beams": 5,
|
19 |
+
"max_length": adjusted_max_length,
|
20 |
+
"min_length": 3
|
21 |
+
}
|
22 |
+
|
23 |
+
summary = pipe(email_body, **gen_kwargs)[0]['summary_text']
|
24 |
+
return summary
|
25 |
+
|
26 |
+
# Generate summaries for the test dataset
|
27 |
+
def generate_summary(text):
|
28 |
+
email_body = re.sub(r'\s+', ' ', re.sub(r'[^\w\s]', '', text).strip())
|
29 |
+
summary = summarize_email(email_body, pipe)
|
30 |
+
return summary
|
31 |
|
32 |
def greet(name):
|
33 |
return "Hello " + name + "!!"
|
34 |
|
35 |
+
demo = gr.Interface(fn=generate_summary, inputs="text", outputs="text")
|
36 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
transformers
|