mischeiwiller's picture
Update kornia_aug.py
0344d09 verified
import streamlit as st
import kornia
import torch
from torch import nn
from torchvision.transforms import functional as F
from torchvision.utils import make_grid
from streamlit_ace import st_ace
from PIL import Image
import numpy as np
IS_LOCAL = False # Change this
@st.cache_data
def set_transform(content):
try:
transform = eval(content, {"kornia": kornia, "nn": nn}, None)
except Exception as e:
st.write(f"There was an error: {e}")
transform = nn.Sequential()
return transform
st.set_page_config(page_title="Kornia Augmentations Demo", layout="wide")
st.markdown("# Kornia Augmentations Demo")
st.sidebar.markdown(
"[Kornia](https://github.com/kornia/kornia) is a *differentiable* computer vision library for PyTorch."
)
uploaded_file = st.sidebar.file_uploader("Choose a file", type=['png', 'jpg', 'jpeg'])
if uploaded_file is not None:
im = Image.open(uploaded_file)
else:
im = Image.open("./images/pretty_bird.jpg")
scaler = int(im.height / 2)
st.sidebar.image(im, caption="Input Image", width=256)
# Convert PIL Image to torch tensor
image = torch.from_numpy(np.array(im).transpose((2, 0, 1))).float() / 255.0
# batch size is just for show
batch_size = st.sidebar.slider("batch_size", min_value=4, max_value=16, value=8)
gpu = st.sidebar.checkbox("Use GPU!", value=False)
if not gpu:
st.sidebar.markdown("Using CPU for operations.")
device = torch.device("cpu")
else:
if not IS_LOCAL or not torch.cuda.is_available():
st.sidebar.markdown("GPU not available, using CPU.")
device = torch.device("cpu")
else:
st.sidebar.markdown("Running on GPU~")
device = torch.device("cuda:0")
predefined_transforms = [
"""
nn.Sequential(
kornia.augmentation.RandomAffine(degrees=360,p=0.5),
kornia.augmentation.ColorJitter(brightness=0.2, contrast=0.3, saturation=0.2, hue=0.3, p=1)
)
# p=0.5 is the probability of applying the transformation
""",
"""
nn.Sequential(
kornia.augmentation.RandomErasing(scale=(.4, .8), ratio=(.3, 1/.3), p=0.5),
)
""",
"""
nn.Sequential(
kornia.augmentation.RandomErasing(scale=(.4, .8), ratio=(.3, 1/.3), p=1, same_on_batch=True),
)
#By setting same_on_batch=True you can apply the same transform across the batch
""",
f"""
nn.Sequential(
kornia.augmentation.RandomResizedCrop(size=({scaler}, {scaler}), scale=(3., 3.), ratio=(2., 2.), p=1.),
kornia.augmentation.RandomHorizontalFlip(p=0.7),
kornia.augmentation.RandomGrayscale(p=0.5),
)
"""
]
selected_transform = st.selectbox(
"Pick an augmentation pipeline example:", predefined_transforms
)
st.write("Transform to apply:")
readonly = False
content = st_ace(
value=selected_transform,
height=150,
language="python",
keybinding="vscode",
show_gutter=True,
show_print_margin=True,
wrap=False,
auto_update=False,
readonly=readonly,
)
if content:
transform = set_transform(content)
process = st.button("Next Batch")
# Fake dataloader
image_batch = torch.stack(batch_size * [image])
image_batch = image_batch.to(device)
transformeds = None
try:
transformeds = transform(image_batch)
except Exception as e:
st.write(f"There was an error: {e}")
cols = st.columns(4)
if transformeds is not None:
for i, x in enumerate(transformeds):
i = i % 4
img_np = x.cpu().numpy().transpose((1, 2, 0))
img_np = (img_np * 255).astype(np.uint8)
cols[i].image(img_np, use_column_width=True)
st.markdown(
"There are a lot more transformations available: [Documentation](https://kornia.readthedocs.io/en/latest/augmentation.module.html)"
)
st.markdown(
"Kornia can do a lot more than augmentations~ [Check it out](https://kornia.readthedocs.io/en/latest/get-started/introduction.html)"
)