Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
mischeiwiller
commited on
Commit
β’
aa91494
1
Parent(s):
4c55de5
Update kornia_aug.py
Browse files- kornia_aug.py +9 -3
kornia_aug.py
CHANGED
@@ -18,21 +18,27 @@ def set_transform(content):
|
|
18 |
transform = nn.Sequential()
|
19 |
return transform
|
20 |
|
|
|
|
|
21 |
st.markdown("# Kornia Augmentations Demo")
|
22 |
st.sidebar.markdown(
|
23 |
"[Kornia](https://github.com/kornia/kornia) is a *differentiable* computer vision library for PyTorch."
|
24 |
)
|
25 |
-
|
|
|
26 |
if uploaded_file is not None:
|
27 |
im = Image.open(uploaded_file)
|
28 |
else:
|
29 |
im = Image.open("./images/pretty_bird.jpg")
|
|
|
30 |
scaler = int(im.height / 2)
|
31 |
st.sidebar.image(im, caption="Input Image", width=256)
|
|
|
32 |
image = F.pil_to_tensor(im).float() / 255
|
33 |
|
34 |
# batch size is just for show
|
35 |
batch_size = st.sidebar.slider("batch_size", min_value=4, max_value=16, value=8)
|
|
|
36 |
gpu = st.sidebar.checkbox("Use GPU!", value=True)
|
37 |
if not gpu:
|
38 |
st.sidebar.markdown("With Kornia you do ops on the GPU!")
|
@@ -93,6 +99,7 @@ content = st_ace(
|
|
93 |
auto_update=False,
|
94 |
readonly=readonly,
|
95 |
)
|
|
|
96 |
if content:
|
97 |
transform = set_transform(content)
|
98 |
|
@@ -100,8 +107,8 @@ process = st.button("Next Batch")
|
|
100 |
|
101 |
# Fake dataloader
|
102 |
image_batch = torch.stack(batch_size * [image])
|
103 |
-
|
104 |
image_batch = image_batch.to(device)
|
|
|
105 |
transformeds = None
|
106 |
try:
|
107 |
transformeds = transform(image_batch)
|
@@ -109,7 +116,6 @@ except Exception as e:
|
|
109 |
st.write(f"There was an error: {e}")
|
110 |
|
111 |
cols = st.columns(4)
|
112 |
-
|
113 |
if transformeds is not None:
|
114 |
for i, x in enumerate(transformeds):
|
115 |
i = i % 4
|
|
|
18 |
transform = nn.Sequential()
|
19 |
return transform
|
20 |
|
21 |
+
st.set_page_config(page_title="Kornia Augmentations Demo", layout="wide")
|
22 |
+
|
23 |
st.markdown("# Kornia Augmentations Demo")
|
24 |
st.sidebar.markdown(
|
25 |
"[Kornia](https://github.com/kornia/kornia) is a *differentiable* computer vision library for PyTorch."
|
26 |
)
|
27 |
+
|
28 |
+
uploaded_file = st.sidebar.file_uploader("Choose a file", type=['png', 'jpg', 'jpeg'])
|
29 |
if uploaded_file is not None:
|
30 |
im = Image.open(uploaded_file)
|
31 |
else:
|
32 |
im = Image.open("./images/pretty_bird.jpg")
|
33 |
+
|
34 |
scaler = int(im.height / 2)
|
35 |
st.sidebar.image(im, caption="Input Image", width=256)
|
36 |
+
|
37 |
image = F.pil_to_tensor(im).float() / 255
|
38 |
|
39 |
# batch size is just for show
|
40 |
batch_size = st.sidebar.slider("batch_size", min_value=4, max_value=16, value=8)
|
41 |
+
|
42 |
gpu = st.sidebar.checkbox("Use GPU!", value=True)
|
43 |
if not gpu:
|
44 |
st.sidebar.markdown("With Kornia you do ops on the GPU!")
|
|
|
99 |
auto_update=False,
|
100 |
readonly=readonly,
|
101 |
)
|
102 |
+
|
103 |
if content:
|
104 |
transform = set_transform(content)
|
105 |
|
|
|
107 |
|
108 |
# Fake dataloader
|
109 |
image_batch = torch.stack(batch_size * [image])
|
|
|
110 |
image_batch = image_batch.to(device)
|
111 |
+
|
112 |
transformeds = None
|
113 |
try:
|
114 |
transformeds = transform(image_batch)
|
|
|
116 |
st.write(f"There was an error: {e}")
|
117 |
|
118 |
cols = st.columns(4)
|
|
|
119 |
if transformeds is not None:
|
120 |
for i, x in enumerate(transformeds):
|
121 |
i = i % 4
|