File size: 6,986 Bytes
c962a1e
 
 
0f5d4d0
c962a1e
 
391bf1a
0f5d4d0
391bf1a
 
 
 
c962a1e
391bf1a
 
c962a1e
391bf1a
da4f293
 
391bf1a
 
c962a1e
391bf1a
c962a1e
 
da4f293
 
 
 
 
 
 
 
 
c962a1e
391bf1a
 
 
da4f293
12b8205
da4f293
391bf1a
da4f293
391bf1a
 
 
c962a1e
 
 
 
 
 
 
 
 
 
 
 
 
 
e4b0eea
c962a1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391bf1a
 
c962a1e
 
391bf1a
 
 
d78252d
391bf1a
c962a1e
391bf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c962a1e
391bf1a
 
 
 
 
 
 
 
c962a1e
 
391bf1a
 
 
 
 
fc18a2b
 
9f1456e
fc18a2b
c962a1e
391bf1a
 
 
a41d73e
391bf1a
 
 
 
 
fc18a2b
 
9f1456e
fc18a2b
c962a1e
391bf1a
 
 
a41d73e
391bf1a
 
 
 
fc18a2b
 
9f1456e
fc18a2b
391bf1a
 
 
a41d73e
 
391bf1a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import time
import tempfile
import re
from math import floor
from typing import Optional

import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from punctuators.models import PunctCapSegModelONNX


# configuration
MODEL_NAME = "kotoba-tech/kotoba-whisper-v1.0"
BATCH_SIZE = 16
CHUNK_LENGTH_S = 15
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files
PUNCTUATOR = PunctCapSegModelONNX.from_pretrained("pcs_47lang")


# device setting
if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
    device = "cuda:0"
    model_kwargs = {'attn_implementation': 'sdpa'}
else:
    torch_dtype = torch.float32
    device = "cpu"
    model_kwargs = {}

# define the pipeline
pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=CHUNK_LENGTH_S,
    batch_size=BATCH_SIZE,
    torch_dtype=torch_dtype,
    device=device,
    model_kwargs=model_kwargs
)


def format_time(start: Optional[float], end: Optional[float]):

    def _format_time(seconds: Optional[float]):
        if seconds is None:
            return "complete    "
        minutes = floor(seconds / 60)
        hours = floor(seconds / 3600)
        seconds = seconds - hours * 3600 - minutes * 60
        m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3)
        seconds = floor(seconds)
        return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}'

    return f"[{_format_time(start)}-> {_format_time(end)}]:"


def get_prediction(inputs, prompt: Optional[str], punctuate_text: bool = True):
    generate_kwargs = {"language": "japanese", "task": "transcribe"}
    if prompt:
        generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
    prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs)
    if punctuate_text:
        text_edit = PUNCTUATOR.infer([c['text'] for c in prediction['chunks']])
        prediction['chunks'] = [
            {
                'timestamp': c['timestamp'],
                'text': "".join(e) if 'unk' not in "".join(e).lower() else c['text']
            } for c, e in zip(prediction['chunks'], text_edit)
        ]
    text = "".join([c['text'] for c in prediction['chunks']])
    text_timestamped = "\n".join([
        f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']
    ])
    return text, text_timestamped


def transcribe(inputs, prompt, punctuate_text: bool = True):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    return get_prediction(inputs, prompt, punctuate_text)


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'


def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, prompt, punctuate_text: bool = True):
    html_embed_str = _return_yt_html_embed(yt_url)
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()
    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    text, text_timestamped = get_prediction(inputs, prompt, punctuate_text)
    return html_embed_str, text, text_timestamped


demo = gr.Blocks()
mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
    ],
    outputs=["text", "text"],
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of arbitrary length.",
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
        gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
    ],
    outputs=["text", "text"],
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of arbitrary length.",
    allow_flagging="never",
)
yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
    ],
    outputs=["html", "text"],
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe YouTube with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form YouTube videos with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of arbitrary length.",
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.launch(enable_queue=True)