Spaces:
Runtime error
Runtime error
Create app_sketch.py
Browse files- app_sketch.py +165 -0
app_sketch.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import PIL.Image
|
4 |
+
import torch
|
5 |
+
import torchvision.transforms.functional as TF
|
6 |
+
|
7 |
+
from model import Model
|
8 |
+
from utils import (
|
9 |
+
DEFAULT_STYLE_NAME,
|
10 |
+
MAX_SEED,
|
11 |
+
STYLE_NAMES,
|
12 |
+
apply_style,
|
13 |
+
randomize_seed_fn,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def create_demo(model: Model) -> gr.Blocks:
|
18 |
+
def run(
|
19 |
+
image: PIL.Image.Image,
|
20 |
+
prompt: str,
|
21 |
+
negative_prompt: str,
|
22 |
+
style_name: str = DEFAULT_STYLE_NAME,
|
23 |
+
num_steps: int = 25,
|
24 |
+
guidance_scale: float = 5,
|
25 |
+
adapter_conditioning_scale: float = 0.8,
|
26 |
+
adapter_conditioning_factor: float = 0.8,
|
27 |
+
seed: int = 0,
|
28 |
+
progress=gr.Progress(track_tqdm=True),
|
29 |
+
) -> PIL.Image.Image:
|
30 |
+
image = image.convert("RGB")
|
31 |
+
image = TF.to_tensor(image) > 0.5
|
32 |
+
image = TF.to_pil_image(image.to(torch.float32))
|
33 |
+
|
34 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
35 |
+
|
36 |
+
return model.run(
|
37 |
+
image=image,
|
38 |
+
prompt=prompt,
|
39 |
+
negative_prompt=negative_prompt,
|
40 |
+
adapter_name="sketch",
|
41 |
+
num_inference_steps=num_steps,
|
42 |
+
guidance_scale=guidance_scale,
|
43 |
+
adapter_conditioning_scale=adapter_conditioning_scale,
|
44 |
+
adapter_conditioning_factor=adapter_conditioning_factor,
|
45 |
+
seed=seed,
|
46 |
+
apply_preprocess=False,
|
47 |
+
)[1]
|
48 |
+
|
49 |
+
with gr.Blocks() as demo:
|
50 |
+
with gr.Row():
|
51 |
+
with gr.Column():
|
52 |
+
with gr.Group():
|
53 |
+
image = gr.Image(
|
54 |
+
source="canvas",
|
55 |
+
tool="sketch",
|
56 |
+
type="pil",
|
57 |
+
image_mode="L",
|
58 |
+
invert_colors=True,
|
59 |
+
shape=(1024, 1024),
|
60 |
+
brush_radius=4,
|
61 |
+
height=600,
|
62 |
+
)
|
63 |
+
prompt = gr.Textbox(label="Prompt")
|
64 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
65 |
+
run_button = gr.Button("Run")
|
66 |
+
with gr.Accordion("Advanced options", open=False):
|
67 |
+
negative_prompt = gr.Textbox(
|
68 |
+
label="Negative prompt",
|
69 |
+
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
|
70 |
+
)
|
71 |
+
num_steps = gr.Slider(
|
72 |
+
label="Number of steps",
|
73 |
+
minimum=1,
|
74 |
+
maximum=50,
|
75 |
+
step=1,
|
76 |
+
value=25,
|
77 |
+
)
|
78 |
+
guidance_scale = gr.Slider(
|
79 |
+
label="Guidance scale",
|
80 |
+
minimum=0.1,
|
81 |
+
maximum=10.0,
|
82 |
+
step=0.1,
|
83 |
+
value=5,
|
84 |
+
)
|
85 |
+
adapter_conditioning_scale = gr.Slider(
|
86 |
+
label="Adapter conditioning scale",
|
87 |
+
minimum=0.5,
|
88 |
+
maximum=1,
|
89 |
+
step=0.1,
|
90 |
+
value=0.8,
|
91 |
+
)
|
92 |
+
adapter_conditioning_factor = gr.Slider(
|
93 |
+
label="Adapter conditioning factor",
|
94 |
+
info="Fraction of timesteps for which adapter should be applied",
|
95 |
+
minimum=0.5,
|
96 |
+
maximum=1,
|
97 |
+
step=0.1,
|
98 |
+
value=0.8,
|
99 |
+
)
|
100 |
+
seed = gr.Slider(
|
101 |
+
label="Seed",
|
102 |
+
minimum=0,
|
103 |
+
maximum=MAX_SEED,
|
104 |
+
step=1,
|
105 |
+
value=0,
|
106 |
+
)
|
107 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
108 |
+
with gr.Column():
|
109 |
+
result = gr.Image(label="Result", height=600)
|
110 |
+
|
111 |
+
inputs = [
|
112 |
+
image,
|
113 |
+
prompt,
|
114 |
+
negative_prompt,
|
115 |
+
style,
|
116 |
+
num_steps,
|
117 |
+
guidance_scale,
|
118 |
+
adapter_conditioning_scale,
|
119 |
+
adapter_conditioning_factor,
|
120 |
+
seed,
|
121 |
+
]
|
122 |
+
prompt.submit(
|
123 |
+
fn=randomize_seed_fn,
|
124 |
+
inputs=[seed, randomize_seed],
|
125 |
+
outputs=seed,
|
126 |
+
queue=False,
|
127 |
+
api_name=False,
|
128 |
+
).then(
|
129 |
+
fn=run,
|
130 |
+
inputs=inputs,
|
131 |
+
outputs=result,
|
132 |
+
api_name=False,
|
133 |
+
)
|
134 |
+
negative_prompt.submit(
|
135 |
+
fn=randomize_seed_fn,
|
136 |
+
inputs=[seed, randomize_seed],
|
137 |
+
outputs=seed,
|
138 |
+
queue=False,
|
139 |
+
api_name=False,
|
140 |
+
).then(
|
141 |
+
fn=run,
|
142 |
+
inputs=inputs,
|
143 |
+
outputs=result,
|
144 |
+
api_name=False,
|
145 |
+
)
|
146 |
+
run_button.click(
|
147 |
+
fn=randomize_seed_fn,
|
148 |
+
inputs=[seed, randomize_seed],
|
149 |
+
outputs=seed,
|
150 |
+
queue=False,
|
151 |
+
api_name=False,
|
152 |
+
).then(
|
153 |
+
fn=run,
|
154 |
+
inputs=inputs,
|
155 |
+
outputs=result,
|
156 |
+
api_name=False,
|
157 |
+
)
|
158 |
+
|
159 |
+
return demo
|
160 |
+
|
161 |
+
|
162 |
+
if __name__ == "__main__":
|
163 |
+
model = Model("sketch")
|
164 |
+
demo = create_demo(model)
|
165 |
+
demo.queue(max_size=20).launch()
|