Spaces:
Sleeping
Sleeping
Update matplotlib configuration
Browse files
app.py
CHANGED
@@ -1,52 +1,44 @@
|
|
|
|
|
|
|
|
|
|
1 |
from sklearn.datasets import make_circles
|
2 |
from sklearn.model_selection import train_test_split
|
3 |
from sklearn.decomposition import PCA, KernelPCA
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
-
X, y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0)
|
7 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
|
8 |
-
|
9 |
def fit_plot(n_comp, gamma, alpha):
|
10 |
-
|
|
|
11 |
pca = PCA(n_components=n_comp)
|
12 |
-
kernel_pca = KernelPCA(
|
13 |
-
n_components=None, kernel="rbf", gamma=gamma, fit_inverse_transform=True, alpha=alpha
|
14 |
-
)
|
15 |
-
|
16 |
X_test_pca = pca.fit(X_train).transform(X_test)
|
17 |
X_test_kernel_pca = kernel_pca.fit(X_train).transform(X_test)
|
18 |
-
|
19 |
-
fig1, (orig_data_ax, pca_proj_ax, kernel_pca_proj_ax) = plt.subplots(
|
20 |
-
ncols=3, figsize=(14, 4)
|
21 |
-
)
|
22 |
-
|
23 |
orig_data_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test)
|
24 |
orig_data_ax.set_ylabel("Feature #1")
|
25 |
orig_data_ax.set_xlabel("Feature #0")
|
26 |
orig_data_ax.set_title("Testing data")
|
27 |
-
|
28 |
pca_proj_ax.scatter(X_test_pca[:, 0], X_test_pca[:, 1], c=y_test)
|
29 |
pca_proj_ax.set_ylabel("Principal component #1")
|
30 |
pca_proj_ax.set_xlabel("Principal component #0")
|
31 |
pca_proj_ax.set_title("Projection of testing data\n using PCA")
|
32 |
-
|
33 |
kernel_pca_proj_ax.scatter(X_test_kernel_pca[:, 0], X_test_kernel_pca[:, 1], c=y_test)
|
34 |
kernel_pca_proj_ax.set_ylabel("Principal component #1")
|
35 |
kernel_pca_proj_ax.set_xlabel("Principal component #0")
|
36 |
_ = kernel_pca_proj_ax.set_title("Projection of testing data\n using KernelPCA")
|
37 |
-
|
38 |
-
return fig1
|
39 |
-
|
40 |
|
41 |
with gr.Blocks() as demo:
|
42 |
gr.Markdown("## PCA vs Kernel PCA")
|
43 |
-
gr.Markdown("Demo is based on the [Kernel PCA](https://scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html#sphx-glr-auto-examples-decomposition-plot-kernel-pca-py")
|
44 |
with gr.Row():
|
45 |
p1 = gr.Slider(0, 10, label="Number of PCs", value=2, step=1)
|
46 |
p2 = gr.Slider(0, 10, label="Kernel coefficient", value=10, step=1e-3)
|
47 |
p3 = gr.Slider(0, 1, label="Hyperparameter for ridge regression", value=0.1, step=1e-3)
|
48 |
-
|
49 |
btn = gr.Button(value="Submit")
|
50 |
-
btn.click(fit_plot, inputs=
|
51 |
|
52 |
demo.launch()
|
|
|
1 |
+
"""
|
2 |
+
Demo is based on the [Kernel PCA] - (https://scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html#sphx-glr-auto-examples-decomposition-plot-kernel-pca-py
|
3 |
+
"""
|
4 |
+
|
5 |
from sklearn.datasets import make_circles
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
from sklearn.decomposition import PCA, KernelPCA
|
8 |
+
import matplotlib
|
9 |
+
matplotlib.use('agg')
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
import gradio as gr
|
12 |
|
|
|
|
|
|
|
13 |
def fit_plot(n_comp, gamma, alpha):
|
14 |
+
X, y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0)
|
15 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
|
16 |
pca = PCA(n_components=n_comp)
|
17 |
+
kernel_pca = KernelPCA(n_components=None, kernel="rbf", gamma=gamma, fit_inverse_transform=True, alpha=alpha)
|
|
|
|
|
|
|
18 |
X_test_pca = pca.fit(X_train).transform(X_test)
|
19 |
X_test_kernel_pca = kernel_pca.fit(X_train).transform(X_test)
|
20 |
+
fig, (orig_data_ax, pca_proj_ax, kernel_pca_proj_ax) = plt.subplots(ncols=3, figsize=(14, 4))
|
|
|
|
|
|
|
|
|
21 |
orig_data_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test)
|
22 |
orig_data_ax.set_ylabel("Feature #1")
|
23 |
orig_data_ax.set_xlabel("Feature #0")
|
24 |
orig_data_ax.set_title("Testing data")
|
|
|
25 |
pca_proj_ax.scatter(X_test_pca[:, 0], X_test_pca[:, 1], c=y_test)
|
26 |
pca_proj_ax.set_ylabel("Principal component #1")
|
27 |
pca_proj_ax.set_xlabel("Principal component #0")
|
28 |
pca_proj_ax.set_title("Projection of testing data\n using PCA")
|
|
|
29 |
kernel_pca_proj_ax.scatter(X_test_kernel_pca[:, 0], X_test_kernel_pca[:, 1], c=y_test)
|
30 |
kernel_pca_proj_ax.set_ylabel("Principal component #1")
|
31 |
kernel_pca_proj_ax.set_xlabel("Principal component #0")
|
32 |
_ = kernel_pca_proj_ax.set_title("Projection of testing data\n using KernelPCA")
|
33 |
+
return fig
|
|
|
|
|
34 |
|
35 |
with gr.Blocks() as demo:
|
36 |
gr.Markdown("## PCA vs Kernel PCA")
|
|
|
37 |
with gr.Row():
|
38 |
p1 = gr.Slider(0, 10, label="Number of PCs", value=2, step=1)
|
39 |
p2 = gr.Slider(0, 10, label="Kernel coefficient", value=10, step=1e-3)
|
40 |
p3 = gr.Slider(0, 1, label="Hyperparameter for ridge regression", value=0.1, step=1e-3)
|
|
|
41 |
btn = gr.Button(value="Submit")
|
42 |
+
btn.click(fit_plot, inputs=[p1,p2,p3], outputs=gr.Plot(label="Projecting data with PCA and Kernel PCA "))
|
43 |
|
44 |
demo.launch()
|