Spaces:
Sleeping
Sleeping
File size: 2,134 Bytes
8dc81a8 fdee321 4f9ea63 98fc1c9 8dc81a8 4f9ea63 98fc1c9 1ef45ad 98fc1c9 8dc81a8 dc6ab6b 8dc81a8 ea488ba 8dc81a8 98fc1c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import os
import time
import sys
import torch
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from pydantic import Field
from diffusers import StableDiffusionPipeline
app = FastAPI()
class Data(BaseModel):
string: str
member_secret: str
class ItemOut(BaseModel):
status: str
file: str
@app.get("/")
def index():
return "SORRY! This file is member only."
@app.post("/draw", response_model=ItemOut)
def draw(data: Data):
if data.member_secret != "" and data.member_secret == os.environ.get("MEMBER_SECRET"):
print(f"Is CUDA available: {torch.cuda.is_available()}")
# prompt = '(('+data.string+')) (( photograph )), highly detailed, sharp focus, 8k, 4k, (( photorealism )), detailed, saturated, portrait, 50mm, F/2.8, 1m away, ( global illumination, studio light, volumetric light ), ((( multicolor lights )))'
prompt = '(('+data.string+')) (( photograph )), highly detailed, sharp focus, 8k, 4k, (( photorealism )), detailed, saturated, portrait, 50mm, F/2.8, 1m away, ((( multicolor lights )))'
n_prompt = 'text, blurry, art, painting, rendering, drawing, sketch, (( ugly )), (( duplicate )), ( morbid ), (( mutilated )), ( mutated ), ( deformed ), ( disfigured ), ( extra limbs ), ( malformed limbs ), ( missing arms ), ( missing legs ), ( extra arms ), ( extra legs ), ( fused fingers ), ( too many fingers ), long neck, low quality, worst quality'
# https://huggingface.co/docs/hub/spaces-sdks-docker-first-demo
# how to validation: https://qiita.com/bee2/items/75d9c0d7ba20e7a4a0e9
# https://github.com/huggingface/diffusers
model_id = 'stabilityai/stable-diffusion-2'
#pipe = StableDiffusionPipeline.from_pretrained(model_id)
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision='fp16', torch_dtype=torch.float16)
pipe = pipe.to('cuda')
image = pipe(prompt, negative_prompt=n_prompt).images[0]
fileName = "sd_" + str(time.time()) + '.png'
image.save("/code/tmpdir/" + fileName)
print(fileName)
return {"status": "OK", "file": fileName}
else:
return {"status": "SORRY! This file is member only.", "file": ""}
|