SOR / app.py
aiqtech's picture
Update app.py
9db503b verified
raw
history blame
23.3 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from typing import Tuple, Dict, Any # Tuple import ์ถ”๊ฐ€
# ํŒŒ์ผ ์ƒ๋‹จ์˜ import ๋ฌธ
import transformers
from transformers import pipeline as transformers_pipeline
from transformers import Pipeline
import gc # ํŒŒ์ผ ์ƒ๋‹จ์— ์ถ”๊ฐ€
# ์ „์—ญ ๋ณ€์ˆ˜ ์ดˆ๊ธฐํ™”
class GlobalVars:
def __init__(self):
self.translator = None
self.trellis_pipeline = None
self.flux_pipe = None
g = GlobalVars()
def initialize_models(device):
try:
print("Initializing models...")
# 3D ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large"
)
print("TrellisImageTo3DPipeline loaded successfully")
# ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ
print("Loading flux_pipe...")
g.flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
device_map="balanced"
)
print("FluxPipeline loaded successfully")
# Hyper-SD LoRA ๋กœ๋“œ
print("Loading LoRA weights...")
lora_path = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
g.flux_pipe.load_lora_weights(lora_path)
g.flux_pipe.fuse_lora(lora_scale=0.125)
print("LoRA weights loaded successfully")
# ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™”
print("Initializing translator...")
g.translator = transformers_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device
)
print("Model initialization completed successfully")
except Exception as e:
print(f"Error during model initialization: {str(e)}")
raise
# CUDA ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ์„ค์ •
torch.cuda.empty_cache()
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
os.environ['SPCONV_ALGO'] = 'native'
os.environ['SPARSE_BACKEND'] = 'native'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1'
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1'
os.environ['TORCH_CUDA_MEMORY_ALLOCATOR'] = 'native'
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
# CUDA ์ดˆ๊ธฐํ™” ๋ฐฉ์ง€
torch.set_grad_enabled(False)
# Hugging Face ํ† ํฐ ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
if image is None:
print("Error: Input image is None")
return "", None
try:
if g.trellis_pipeline is None:
print("Error: trellis_pipeline is not initialized")
return "", None
# webp ์ด๋ฏธ์ง€๋ฅผ RGB๋กœ ๋ณ€ํ™˜
if isinstance(image, str) and image.endswith('.webp'):
image = Image.open(image).convert('RGB')
elif isinstance(image, Image.Image):
image = image.convert('RGB')
trial_id = str(uuid.uuid4())
processed_image = g.trellis_pipeline.preprocess_image(image)
if processed_image is not None:
save_path = f"{TMP_DIR}/{trial_id}.png"
processed_image.save(save_path)
print(f"Saved processed image to: {save_path}")
return trial_id, processed_image
else:
print("Error: Processed image is None")
return "", None
except Exception as e:
print(f"Error in image preprocessing: {str(e)}")
return "", None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
print(f"Starting image_to_3d with trial_id: {trial_id}")
if not trial_id or trial_id.strip() == "":
print("Error: No trial_id provided")
return None, None
try:
# CUDA ๋ฉ”๋ชจ๋ฆฌ ์ดˆ๊ธฐํ™”
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
image_path = f"{TMP_DIR}/{trial_id}.png"
print(f"Looking for image at: {image_path}")
if not os.path.exists(image_path):
print(f"Error: Image file not found at {image_path}")
return None, None
image = Image.open(image_path)
print(f"Successfully loaded image with size: {image.size}")
# ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์ œํ•œ
max_size = 512
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
print(f"Resized image to: {image.size}")
# GPU ์ž‘์—… ์‹œ์ž‘
with torch.inference_mode():
try:
# ๋ชจ๋ธ์„ GPU๋กœ ์ด๋™
g.trellis_pipeline.to('cuda')
torch.cuda.synchronize()
# 3D ์ƒ์„ฑ
outputs = g.trellis_pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": min(ss_sampling_steps, 12),
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": min(slat_sampling_steps, 12),
"cfg_strength": slat_guidance_strength,
},
)
torch.cuda.synchronize()
# ๋น„๋””์˜ค ๋ Œ๋”๋ง
video = render_utils.render_video(
outputs['gaussian'][0],
num_frames=60,
resolution=512
)['color']
torch.cuda.synchronize()
video_geo = render_utils.render_video(
outputs['mesh'][0],
num_frames=60,
resolution=512
)['normal']
torch.cuda.synchronize()
# CPU๋กœ ๋ฐ์ดํ„ฐ ์ด๋™
video = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video]
video_geo = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video_geo]
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
new_trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{new_trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
# ์ƒํƒœ ์ €์žฅ
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id)
return state, video_path
finally:
# ์ •๋ฆฌ ์ž‘์—…
g.trellis_pipeline.to('cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
if hasattr(g.trellis_pipeline, 'to'):
g.trellis_pipeline.to('cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
return None, None
def clear_gpu_memory():
"""GPU ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ •๋ฆฌํ•˜๋Š” ์œ ํ‹ธ๋ฆฌํ‹ฐ ํ•จ์ˆ˜"""
try:
if torch.cuda.is_available():
with torch.cuda.device('cuda'):
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
except Exception as e:
print(f"Error clearing GPU memory: {e}")
def move_to_device(model, device):
"""๋ชจ๋ธ์„ ์•ˆ์ „ํ•˜๊ฒŒ ๋””๋ฐ”์ด์Šค๋กœ ์ด๋™ํ•˜๋Š” ํ•จ์ˆ˜"""
try:
if hasattr(model, 'to'):
clear_gpu_memory()
model.to(device)
if device == 'cuda':
torch.cuda.synchronize()
clear_gpu_memory()
except Exception as e:
print(f"Error moving model to {device}: {str(e)}")
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
try:
# GPU ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
clear_gpu_memory()
# ์ƒํƒœ ์–ธํŒจํ‚น
gs, mesh, trial_id = unpack_state(state)
# GLB ๋ณ€ํ™˜ ์ „ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ
if gs is None or mesh is None:
print("Error: Invalid gaussian or mesh data")
return None, None
# GLB ๋ณ€ํ™˜
with torch.inference_mode():
try:
# Gaussian ๊ฐ์ฒด์˜ ํ…์„œ๋“ค์— ๋Œ€ํ•ด requires_grad ์„ค์ •
for attr_name in ['_xyz', '_features_dc', '_scaling', '_rotation', '_opacity']:
if hasattr(gs, attr_name):
tensor = getattr(gs, attr_name)
if torch.is_tensor(tensor):
tensor.requires_grad_(False)
# Mesh ํ…์„œ๋“ค์— ๋Œ€ํ•ด requires_grad ์„ค์ •
if hasattr(mesh, 'vertices') and torch.is_tensor(mesh.vertices):
mesh.vertices.requires_grad_(False)
if hasattr(mesh, 'faces') and torch.is_tensor(mesh.faces):
mesh.faces.requires_grad_(False)
glb = postprocessing_utils.to_glb(
gs,
mesh,
simplify=mesh_simplify,
texture_size=texture_size,
verbose=True
)
except RuntimeError as e:
print(f"Runtime error during GLB conversion: {str(e)}")
return None, None
if glb is None:
print("Error: GLB conversion failed")
return None, None
# ํŒŒ์ผ ์ €์žฅ
glb_path = f"{TMP_DIR}/{trial_id}.glb"
try:
glb.export(glb_path)
if not os.path.exists(glb_path):
print(f"Error: GLB file was not created at {glb_path}")
return None, None
except Exception as e:
print(f"Error saving GLB file: {str(e)}")
return None, None
print(f"Successfully created GLB file at: {glb_path}")
return glb_path, glb_path
except Exception as e:
print(f"Error in extract_glb: {str(e)}")
return None, None
finally:
# ์ •๋ฆฌ ์ž‘์—…
clear_gpu_memory()
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
try:
# CUDA ๋ฉ”๋ชจ๋ฆฌ ์ดˆ๊ธฐํ™”
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
# ํ•œ๊ธ€ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
def contains_korean(text):
return any(ord('๊ฐ€') <= ord(c) <= ord('ํžฃ') for c in text)
if contains_korean(prompt):
translated = g.translator(prompt)[0]['translation_text']
prompt = translated
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
# ํฌ๊ธฐ ์ œํ•œ
height = min(height, 512)
width = min(width, 512)
steps = min(steps, 12)
with torch.inference_mode():
generated_image = g.flux_pipe(
prompt=[formatted_prompt],
generator=torch.Generator('cuda').manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
if generated_image is not None:
trial_id = str(uuid.uuid4())
save_path = f"{TMP_DIR}/{trial_id}.png"
generated_image.save(save_path)
print(f"Saved generated image to: {save_path}")
return generated_image
else:
print("Error: Generated image is None")
return None
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""## Craft3D""")
# Examples ์ด๋ฏธ์ง€ ๋กœ๋“œ
example_dir = "assets/example_image/"
example_images = []
if os.path.exists(example_dir):
for file in os.listdir(example_dir):
if file.endswith('.webp'):
example_images.append(os.path.join(example_dir, file))
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Describe what you want to create...",
lines=3
)
# ์ด๋ฏธ์ง€ ํ”„๋กฌํ”„ํŠธ
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion("Image Generation Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_image_btn = gr.Button("Generate Image")
with gr.Accordion("3D Generation Settings", open=False):
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)
generate_3d_btn = gr.Button("Generate 3D")
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Examples ๊ฐค๋Ÿฌ๋ฆฌ๋ฅผ ๋งจ ์•„๋ž˜๋กœ ์ด๋™
if example_images:
gr.Markdown("""### Example Images""")
with gr.Row():
gallery = gr.Gallery(
value=example_images,
label="Click an image to use it",
show_label=True,
elem_id="gallery",
columns=11, # ํ•œ ์ค„์— 12๊ฐœ
rows=3, # 2์ค„
height=400, # ๋†’์ด ์กฐ์ •
allow_preview=True,
object_fit="contain" # ์ด๋ฏธ์ง€ ๋น„์œจ ์œ ์ง€
)
def load_example(evt: gr.SelectData):
selected_image = Image.open(example_images[evt.index])
trial_id_val, processed_image = preprocess_image(selected_image)
return selected_image, trial_id_val
gallery.select(
load_example,
None,
[image_prompt, trial_id],
show_progress=True
)
# Handlers
generate_image_btn.click(
text_to_image,
inputs=[text_prompt, height, width, steps, scales, seed],
outputs=[image_prompt]
).then(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt]
)
# ๋‚˜๋จธ์ง€ ํ•ธ๋“ค๋Ÿฌ๋“ค
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_3d_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
if __name__ == "__main__":
try:
# CPU๋กœ ์ดˆ๊ธฐํ™”
device = "cpu"
print(f"Using device: {device}")
# ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
initialize_models(device)
# ์ดˆ๊ธฐ ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ ํ…Œ์ŠคํŠธ
try:
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
if g.trellis_pipeline is not None:
g.trellis_pipeline.preprocess_image(test_image)
else:
print("Warning: trellis_pipeline is None")
except Exception as e:
print(f"Warning: Initial preprocessing test failed: {e}")
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
demo.queue() # ํ ๊ธฐ๋Šฅ ํ™œ์„ฑํ™”
demo.launch(
allowed_paths=[PERSISTENT_DIR, TMP_DIR],
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
print(f"Error during initialization: {e}")
raise