Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,599 Bytes
5f093a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# DUSt3R model class
# --------------------------------------------------------
from copy import deepcopy
import torch
import os
from packaging import version
import huggingface_hub
from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape
from .heads import head_factory
from dust3r.patch_embed import get_patch_embed
import dust3r.utils.path_to_croco # noqa: F401
from models.croco import CroCoNet # noqa
inf = float('inf')
hf_version_number = huggingface_hub.__version__
assert version.parse(hf_version_number) >= version.parse("0.22.0"), "Outdated huggingface_hub version, please reinstall requirements.txt"
def load_model(model_path, device, verbose=True):
if verbose:
print('... loading model from', model_path)
ckpt = torch.load(model_path, map_location='cpu')
args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R")
if 'landscape_only' not in args:
args = args[:-1] + ', landscape_only=False)'
else:
args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False')
assert "landscape_only=False" in args
if verbose:
print(f"instantiating : {args}")
net = eval(args)
s = net.load_state_dict(ckpt['model'], strict=False)
if verbose:
print(s)
return net.to(device)
class AsymmetricCroCo3DStereo (
CroCoNet,
huggingface_hub.PyTorchModelHubMixin,
library_name="dust3r",
repo_url="https://github.com/naver/dust3r",
tags=["image-to-3d"],
):
""" Two siamese encoders, followed by two decoders.
The goal is to output 3d points directly, both images in view1's frame
(hence the asymmetry).
"""
def __init__(self,
output_mode='pts3d',
head_type='linear',
depth_mode=('exp', -inf, inf),
conf_mode=('exp', 1, inf),
freeze='none',
landscape_only=True,
patch_embed_cls='PatchEmbedDust3R', # PatchEmbedDust3R or ManyAR_PatchEmbed
**croco_kwargs):
self.patch_embed_cls = patch_embed_cls
self.croco_args = fill_default_args(croco_kwargs, super().__init__)
super().__init__(**croco_kwargs)
# dust3r specific initialization
self.dec_blocks2 = deepcopy(self.dec_blocks)
self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs)
self.set_freeze(freeze)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kw):
if os.path.isfile(pretrained_model_name_or_path):
return load_model(pretrained_model_name_or_path, device='cpu')
else:
return super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw)
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)
def load_state_dict(self, ckpt, **kw):
# duplicate all weights for the second decoder if not present
new_ckpt = dict(ckpt)
if not any(k.startswith('dec_blocks2') for k in ckpt):
for key, value in ckpt.items():
if key.startswith('dec_blocks'):
new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value
return super().load_state_dict(new_ckpt, **kw)
def set_freeze(self, freeze): # this is for use by downstream models
self.freeze = freeze
to_be_frozen = {
'none': [],
'mask': [self.mask_token],
'encoder': [self.mask_token, self.patch_embed, self.enc_blocks],
}
freeze_all_params(to_be_frozen[freeze])
def _set_prediction_head(self, *args, **kwargs):
""" No prediction head """
return
def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size,
**kw):
assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \
f'{img_size=} must be multiple of {patch_size=}'
self.output_mode = output_mode
self.head_type = head_type
self.depth_mode = depth_mode
self.conf_mode = conf_mode
# allocate heads
self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
# magic wrapper
self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)
def _encode_image(self, image, true_shape):
# embed the image into patches (x has size B x Npatches x C)
x, pos = self.patch_embed(image, true_shape=true_shape)
# add positional embedding without cls token
assert self.enc_pos_embed is None
# now apply the transformer encoder and normalization
for blk in self.enc_blocks:
x = blk(x, pos)
x = self.enc_norm(x)
return x, pos, None
def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2):
if img1.shape[-2:] == img2.shape[-2:]:
out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0),
torch.cat((true_shape1, true_shape2), dim=0))
out, out2 = out.chunk(2, dim=0)
pos, pos2 = pos.chunk(2, dim=0)
else:
out, pos, _ = self._encode_image(img1, true_shape1)
out2, pos2, _ = self._encode_image(img2, true_shape2)
return out, out2, pos, pos2
def _encode_symmetrized(self, view1, view2):
img1 = view1['img']
img2 = view2['img']
B = img1.shape[0]
# Recover true_shape when available, otherwise assume that the img shape is the true one
shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1))
shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1))
# warning! maybe the images have different portrait/landscape orientations
if is_symmetrized(view1, view2):
# computing half of forward pass!'
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2])
feat1, feat2 = interleave(feat1, feat2)
pos1, pos2 = interleave(pos1, pos2)
else:
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2)
return (shape1, shape2), (feat1, feat2), (pos1, pos2)
def _decoder(self, f1, pos1, f2, pos2):
final_output = [(f1, f2)] # before projection
# project to decoder dim
f1 = self.decoder_embed(f1)
f2 = self.decoder_embed(f2)
final_output.append((f1, f2))
for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2):
# img1 side
f1, _ = blk1(*final_output[-1][::+1], pos1, pos2)
# img2 side
f2, _ = blk2(*final_output[-1][::-1], pos2, pos1)
# store the result
final_output.append((f1, f2))
# normalize last output
del final_output[1] # duplicate with final_output[0]
final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))
return zip(*final_output)
def _downstream_head(self, head_num, decout, img_shape):
B, S, D = decout[-1].shape
# img_shape = tuple(map(int, img_shape))
head = getattr(self, f'head{head_num}')
return head(decout, img_shape)
def forward(self, view1, view2):
# encode the two images --> B,S,D
(shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2)
# combine all ref images into object-centric representation
dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2)
with torch.cuda.amp.autocast(enabled=False):
res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1)
res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2)
res2['pts3d_in_other_view'] = res2.pop('pts3d') # predict view2's pts3d in view1's frame
return res1, res2
|