File size: 11,188 Bytes
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Visualization utilities using trimesh
# --------------------------------------------------------
import PIL.Image
import numpy as np
from scipy.spatial.transform import Rotation
import torch

from dust3r.utils.geometry import geotrf, get_med_dist_between_poses
from dust3r.utils.device import to_numpy
from dust3r.utils.image import rgb

try:
    import trimesh
except ImportError:
    print('/!\\ module trimesh is not installed, cannot visualize results /!\\')


def cat_3d(vecs):
    if isinstance(vecs, (np.ndarray, torch.Tensor)):
        vecs = [vecs]
    return np.concatenate([p.reshape(-1, 3) for p in to_numpy(vecs)])


def show_raw_pointcloud(pts3d, colors, point_size=2):
    scene = trimesh.Scene()

    pct = trimesh.PointCloud(cat_3d(pts3d), colors=cat_3d(colors))
    scene.add_geometry(pct)

    scene.show(line_settings={'point_size': point_size})


def pts3d_to_trimesh(img, pts3d, valid=None):
    H, W, THREE = img.shape
    assert THREE == 3
    assert img.shape == pts3d.shape

    vertices = pts3d.reshape(-1, 3)

    # make squares: each pixel == 2 triangles
    idx = np.arange(len(vertices)).reshape(H, W)
    idx1 = idx[:-1, :-1].ravel()  # top-left corner
    idx2 = idx[:-1, +1:].ravel()  # right-left corner
    idx3 = idx[+1:, :-1].ravel()  # bottom-left corner
    idx4 = idx[+1:, +1:].ravel()  # bottom-right corner
    faces = np.concatenate((
        np.c_[idx1, idx2, idx3],
        np.c_[idx3, idx2, idx1],  # same triangle, but backward (cheap solution to cancel face culling)
        np.c_[idx2, idx3, idx4],
        np.c_[idx4, idx3, idx2],  # same triangle, but backward (cheap solution to cancel face culling)
    ), axis=0)

    # prepare triangle colors
    face_colors = np.concatenate((
        img[:-1, :-1].reshape(-1, 3),
        img[:-1, :-1].reshape(-1, 3),
        img[+1:, +1:].reshape(-1, 3),
        img[+1:, +1:].reshape(-1, 3)
    ), axis=0)

    # remove invalid faces
    if valid is not None:
        assert valid.shape == (H, W)
        valid_idxs = valid.ravel()
        valid_faces = valid_idxs[faces].all(axis=-1)
        faces = faces[valid_faces]
        face_colors = face_colors[valid_faces]

    assert len(faces) == len(face_colors)
    return dict(vertices=vertices, face_colors=face_colors, faces=faces)


def cat_meshes(meshes):
    vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes])
    n_vertices = np.cumsum([0]+[len(v) for v in vertices])
    for i in range(len(faces)):
        faces[i][:] += n_vertices[i]

    vertices = np.concatenate(vertices)
    colors = np.concatenate(colors)
    faces = np.concatenate(faces)
    return dict(vertices=vertices, face_colors=colors, faces=faces)


def show_duster_pairs(view1, view2, pred1, pred2):
    import matplotlib.pyplot as pl
    pl.ion()

    for e in range(len(view1['instance'])):
        i = view1['idx'][e]
        j = view2['idx'][e]
        img1 = rgb(view1['img'][e])
        img2 = rgb(view2['img'][e])
        conf1 = pred1['conf'][e].squeeze()
        conf2 = pred2['conf'][e].squeeze()
        score = conf1.mean()*conf2.mean()
        print(f">> Showing pair #{e} {i}-{j} {score=:g}")
        pl.clf()
        pl.subplot(221).imshow(img1)
        pl.subplot(223).imshow(img2)
        pl.subplot(222).imshow(conf1, vmin=1, vmax=30)
        pl.subplot(224).imshow(conf2, vmin=1, vmax=30)
        pts1 = pred1['pts3d'][e]
        pts2 = pred2['pts3d_in_other_view'][e]
        pl.subplots_adjust(0, 0, 1, 1, 0, 0)
        if input('show pointcloud? (y/n) ') == 'y':
            show_raw_pointcloud(cat(pts1, pts2), cat(img1, img2), point_size=5)


def auto_cam_size(im_poses):
    return 0.1 * get_med_dist_between_poses(im_poses)


class SceneViz:
    def __init__(self):
        self.scene = trimesh.Scene()

    def add_pointcloud(self, pts3d, color, mask=None):
        pts3d = to_numpy(pts3d)
        mask = to_numpy(mask)
        if mask is None:
            mask = [slice(None)] * len(pts3d)
        pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
        pct = trimesh.PointCloud(pts.reshape(-1, 3))

        if isinstance(color, (list, np.ndarray, torch.Tensor)):
            color = to_numpy(color)
            col = np.concatenate([p[m] for p, m in zip(color, mask)])
            assert col.shape == pts.shape
            pct.visual.vertex_colors = uint8(col.reshape(-1, 3))
        else:
            assert len(color) == 3
            pct.visual.vertex_colors = np.broadcast_to(uint8(color), pts.shape)

        self.scene.add_geometry(pct)
        return self

    def add_camera(self, pose_c2w, focal=None, color=(0, 0, 0), image=None, imsize=None, cam_size=0.03):
        pose_c2w, focal, color, image = to_numpy((pose_c2w, focal, color, image))
        add_scene_cam(self.scene, pose_c2w, color, image, focal, screen_width=cam_size)
        return self

    def add_cameras(self, poses, focals=None, images=None, imsizes=None, colors=None, **kw):
        def get(arr, idx): return None if arr is None else arr[idx]
        for i, pose_c2w in enumerate(poses):
            self.add_camera(pose_c2w, get(focals, i), image=get(images, i),
                            color=get(colors, i), imsize=get(imsizes, i), **kw)
        return self

    def show(self, point_size=2):
        self.scene.show(line_settings={'point_size': point_size})


def show_raw_pointcloud_with_cams(imgs, pts3d, mask, focals, cams2world,
                                  point_size=2, cam_size=0.05, cam_color=None):
    """ Visualization of a pointcloud with cameras
        imgs = (N, H, W, 3) or N-size list of [(H,W,3), ...]
        pts3d = (N, H, W, 3) or N-size list of [(H,W,3), ...]
        focals = (N,) or N-size list of [focal, ...]
        cams2world = (N,4,4) or N-size list of [(4,4), ...]
    """
    assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
    pts3d = to_numpy(pts3d)
    imgs = to_numpy(imgs)
    focals = to_numpy(focals)
    cams2world = to_numpy(cams2world)

    scene = trimesh.Scene()

    # full pointcloud
    pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
    col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
    pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
    scene.add_geometry(pct)

    # add each camera
    for i, pose_c2w in enumerate(cams2world):
        if isinstance(cam_color, list):
            camera_edge_color = cam_color[i]
        else:
            camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
        add_scene_cam(scene, pose_c2w, camera_edge_color,
                      imgs[i] if i < len(imgs) else None, focals[i], screen_width=cam_size)

    scene.show(line_settings={'point_size': point_size})


def add_scene_cam(scene, pose_c2w, edge_color, image=None, focal=None, imsize=None, screen_width=0.03):

    if image is not None:
        H, W, THREE = image.shape
        assert THREE == 3
        if image.dtype != np.uint8:
            image = np.uint8(255*image)
    elif imsize is not None:
        W, H = imsize
    elif focal is not None:
        H = W = focal / 1.1
    else:
        H = W = 1

    if focal is None:
        focal = min(H, W) * 1.1  # default value
    elif isinstance(focal, np.ndarray):
        focal = focal[0]

    # create fake camera
    height = focal * screen_width / H
    width = screen_width * 0.5**0.5
    rot45 = np.eye(4)
    rot45[:3, :3] = Rotation.from_euler('z', np.deg2rad(45)).as_matrix()
    rot45[2, 3] = -height  # set the tip of the cone = optical center
    aspect_ratio = np.eye(4)
    aspect_ratio[0, 0] = W/H
    transform = pose_c2w @ OPENGL @ aspect_ratio @ rot45
    cam = trimesh.creation.cone(width, height, sections=4)  # , transform=transform)

    # this is the image
    if image is not None:
        vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]])
        faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
        img = trimesh.Trimesh(vertices=vertices, faces=faces)
        uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
        img.visual = trimesh.visual.TextureVisuals(uv_coords, image=PIL.Image.fromarray(image))
        scene.add_geometry(img)

    # this is the camera mesh
    rot2 = np.eye(4)
    rot2[:3, :3] = Rotation.from_euler('z', np.deg2rad(2)).as_matrix()
    vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
    vertices = geotrf(transform, vertices)
    faces = []
    for face in cam.faces:
        if 0 in face:
            continue
        a, b, c = face
        a2, b2, c2 = face + len(cam.vertices)
        a3, b3, c3 = face + 2*len(cam.vertices)

        # add 3 pseudo-edges
        faces.append((a, b, b2))
        faces.append((a, a2, c))
        faces.append((c2, b, c))

        faces.append((a, b, b3))
        faces.append((a, a3, c))
        faces.append((c3, b, c))

    # no culling
    faces += [(c, b, a) for a, b, c in faces]

    cam = trimesh.Trimesh(vertices=vertices, faces=faces)
    cam.visual.face_colors[:, :3] = edge_color
    scene.add_geometry(cam)


def cat(a, b):
    return np.concatenate((a.reshape(-1, 3), b.reshape(-1, 3)))


OPENGL = np.array([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])


CAM_COLORS = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (255, 204, 0), (0, 204, 204),
              (128, 255, 255), (255, 128, 255), (255, 255, 128), (0, 0, 0), (128, 128, 128)]


def uint8(colors):
    if not isinstance(colors, np.ndarray):
        colors = np.array(colors)
    if np.issubdtype(colors.dtype, np.floating):
        colors *= 255
    assert 0 <= colors.min() and colors.max() < 256
    return np.uint8(colors)


def segment_sky(image):
    import cv2
    from scipy import ndimage

    # Convert to HSV
    image = to_numpy(image)
    if np.issubdtype(image.dtype, np.floating):
        image = np.uint8(255*image.clip(min=0, max=1))
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

    # Define range for blue color and create mask
    lower_blue = np.array([0, 0, 100])
    upper_blue = np.array([30, 255, 255])
    mask = cv2.inRange(hsv, lower_blue, upper_blue).view(bool)

    # add luminous gray
    mask |= (hsv[:, :, 1] < 10) & (hsv[:, :, 2] > 150)
    mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180)
    mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220)

    # Morphological operations
    kernel = np.ones((5, 5), np.uint8)
    mask2 = ndimage.binary_opening(mask, structure=kernel)

    # keep only largest CC
    _, labels, stats, _ = cv2.connectedComponentsWithStats(mask2.view(np.uint8), connectivity=8)
    cc_sizes = stats[1:, cv2.CC_STAT_AREA]
    order = cc_sizes.argsort()[::-1]  # bigger first
    i = 0
    selection = []
    while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2:
        selection.append(1 + order[i])
        i += 1
    mask3 = np.in1d(labels, selection).reshape(labels.shape)

    # Apply mask
    return torch.from_numpy(mask3)