Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,188 Bytes
5f093a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Visualization utilities using trimesh
# --------------------------------------------------------
import PIL.Image
import numpy as np
from scipy.spatial.transform import Rotation
import torch
from dust3r.utils.geometry import geotrf, get_med_dist_between_poses
from dust3r.utils.device import to_numpy
from dust3r.utils.image import rgb
try:
import trimesh
except ImportError:
print('/!\\ module trimesh is not installed, cannot visualize results /!\\')
def cat_3d(vecs):
if isinstance(vecs, (np.ndarray, torch.Tensor)):
vecs = [vecs]
return np.concatenate([p.reshape(-1, 3) for p in to_numpy(vecs)])
def show_raw_pointcloud(pts3d, colors, point_size=2):
scene = trimesh.Scene()
pct = trimesh.PointCloud(cat_3d(pts3d), colors=cat_3d(colors))
scene.add_geometry(pct)
scene.show(line_settings={'point_size': point_size})
def pts3d_to_trimesh(img, pts3d, valid=None):
H, W, THREE = img.shape
assert THREE == 3
assert img.shape == pts3d.shape
vertices = pts3d.reshape(-1, 3)
# make squares: each pixel == 2 triangles
idx = np.arange(len(vertices)).reshape(H, W)
idx1 = idx[:-1, :-1].ravel() # top-left corner
idx2 = idx[:-1, +1:].ravel() # right-left corner
idx3 = idx[+1:, :-1].ravel() # bottom-left corner
idx4 = idx[+1:, +1:].ravel() # bottom-right corner
faces = np.concatenate((
np.c_[idx1, idx2, idx3],
np.c_[idx3, idx2, idx1], # same triangle, but backward (cheap solution to cancel face culling)
np.c_[idx2, idx3, idx4],
np.c_[idx4, idx3, idx2], # same triangle, but backward (cheap solution to cancel face culling)
), axis=0)
# prepare triangle colors
face_colors = np.concatenate((
img[:-1, :-1].reshape(-1, 3),
img[:-1, :-1].reshape(-1, 3),
img[+1:, +1:].reshape(-1, 3),
img[+1:, +1:].reshape(-1, 3)
), axis=0)
# remove invalid faces
if valid is not None:
assert valid.shape == (H, W)
valid_idxs = valid.ravel()
valid_faces = valid_idxs[faces].all(axis=-1)
faces = faces[valid_faces]
face_colors = face_colors[valid_faces]
assert len(faces) == len(face_colors)
return dict(vertices=vertices, face_colors=face_colors, faces=faces)
def cat_meshes(meshes):
vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes])
n_vertices = np.cumsum([0]+[len(v) for v in vertices])
for i in range(len(faces)):
faces[i][:] += n_vertices[i]
vertices = np.concatenate(vertices)
colors = np.concatenate(colors)
faces = np.concatenate(faces)
return dict(vertices=vertices, face_colors=colors, faces=faces)
def show_duster_pairs(view1, view2, pred1, pred2):
import matplotlib.pyplot as pl
pl.ion()
for e in range(len(view1['instance'])):
i = view1['idx'][e]
j = view2['idx'][e]
img1 = rgb(view1['img'][e])
img2 = rgb(view2['img'][e])
conf1 = pred1['conf'][e].squeeze()
conf2 = pred2['conf'][e].squeeze()
score = conf1.mean()*conf2.mean()
print(f">> Showing pair #{e} {i}-{j} {score=:g}")
pl.clf()
pl.subplot(221).imshow(img1)
pl.subplot(223).imshow(img2)
pl.subplot(222).imshow(conf1, vmin=1, vmax=30)
pl.subplot(224).imshow(conf2, vmin=1, vmax=30)
pts1 = pred1['pts3d'][e]
pts2 = pred2['pts3d_in_other_view'][e]
pl.subplots_adjust(0, 0, 1, 1, 0, 0)
if input('show pointcloud? (y/n) ') == 'y':
show_raw_pointcloud(cat(pts1, pts2), cat(img1, img2), point_size=5)
def auto_cam_size(im_poses):
return 0.1 * get_med_dist_between_poses(im_poses)
class SceneViz:
def __init__(self):
self.scene = trimesh.Scene()
def add_pointcloud(self, pts3d, color, mask=None):
pts3d = to_numpy(pts3d)
mask = to_numpy(mask)
if mask is None:
mask = [slice(None)] * len(pts3d)
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3))
if isinstance(color, (list, np.ndarray, torch.Tensor)):
color = to_numpy(color)
col = np.concatenate([p[m] for p, m in zip(color, mask)])
assert col.shape == pts.shape
pct.visual.vertex_colors = uint8(col.reshape(-1, 3))
else:
assert len(color) == 3
pct.visual.vertex_colors = np.broadcast_to(uint8(color), pts.shape)
self.scene.add_geometry(pct)
return self
def add_camera(self, pose_c2w, focal=None, color=(0, 0, 0), image=None, imsize=None, cam_size=0.03):
pose_c2w, focal, color, image = to_numpy((pose_c2w, focal, color, image))
add_scene_cam(self.scene, pose_c2w, color, image, focal, screen_width=cam_size)
return self
def add_cameras(self, poses, focals=None, images=None, imsizes=None, colors=None, **kw):
def get(arr, idx): return None if arr is None else arr[idx]
for i, pose_c2w in enumerate(poses):
self.add_camera(pose_c2w, get(focals, i), image=get(images, i),
color=get(colors, i), imsize=get(imsizes, i), **kw)
return self
def show(self, point_size=2):
self.scene.show(line_settings={'point_size': point_size})
def show_raw_pointcloud_with_cams(imgs, pts3d, mask, focals, cams2world,
point_size=2, cam_size=0.05, cam_color=None):
""" Visualization of a pointcloud with cameras
imgs = (N, H, W, 3) or N-size list of [(H,W,3), ...]
pts3d = (N, H, W, 3) or N-size list of [(H,W,3), ...]
focals = (N,) or N-size list of [focal, ...]
cams2world = (N,4,4) or N-size list of [(4,4), ...]
"""
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
imgs[i] if i < len(imgs) else None, focals[i], screen_width=cam_size)
scene.show(line_settings={'point_size': point_size})
def add_scene_cam(scene, pose_c2w, edge_color, image=None, focal=None, imsize=None, screen_width=0.03):
if image is not None:
H, W, THREE = image.shape
assert THREE == 3
if image.dtype != np.uint8:
image = np.uint8(255*image)
elif imsize is not None:
W, H = imsize
elif focal is not None:
H = W = focal / 1.1
else:
H = W = 1
if focal is None:
focal = min(H, W) * 1.1 # default value
elif isinstance(focal, np.ndarray):
focal = focal[0]
# create fake camera
height = focal * screen_width / H
width = screen_width * 0.5**0.5
rot45 = np.eye(4)
rot45[:3, :3] = Rotation.from_euler('z', np.deg2rad(45)).as_matrix()
rot45[2, 3] = -height # set the tip of the cone = optical center
aspect_ratio = np.eye(4)
aspect_ratio[0, 0] = W/H
transform = pose_c2w @ OPENGL @ aspect_ratio @ rot45
cam = trimesh.creation.cone(width, height, sections=4) # , transform=transform)
# this is the image
if image is not None:
vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]])
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
img = trimesh.Trimesh(vertices=vertices, faces=faces)
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
img.visual = trimesh.visual.TextureVisuals(uv_coords, image=PIL.Image.fromarray(image))
scene.add_geometry(img)
# this is the camera mesh
rot2 = np.eye(4)
rot2[:3, :3] = Rotation.from_euler('z', np.deg2rad(2)).as_matrix()
vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
vertices = geotrf(transform, vertices)
faces = []
for face in cam.faces:
if 0 in face:
continue
a, b, c = face
a2, b2, c2 = face + len(cam.vertices)
a3, b3, c3 = face + 2*len(cam.vertices)
# add 3 pseudo-edges
faces.append((a, b, b2))
faces.append((a, a2, c))
faces.append((c2, b, c))
faces.append((a, b, b3))
faces.append((a, a3, c))
faces.append((c3, b, c))
# no culling
faces += [(c, b, a) for a, b, c in faces]
cam = trimesh.Trimesh(vertices=vertices, faces=faces)
cam.visual.face_colors[:, :3] = edge_color
scene.add_geometry(cam)
def cat(a, b):
return np.concatenate((a.reshape(-1, 3), b.reshape(-1, 3)))
OPENGL = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
CAM_COLORS = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (255, 204, 0), (0, 204, 204),
(128, 255, 255), (255, 128, 255), (255, 255, 128), (0, 0, 0), (128, 128, 128)]
def uint8(colors):
if not isinstance(colors, np.ndarray):
colors = np.array(colors)
if np.issubdtype(colors.dtype, np.floating):
colors *= 255
assert 0 <= colors.min() and colors.max() < 256
return np.uint8(colors)
def segment_sky(image):
import cv2
from scipy import ndimage
# Convert to HSV
image = to_numpy(image)
if np.issubdtype(image.dtype, np.floating):
image = np.uint8(255*image.clip(min=0, max=1))
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Define range for blue color and create mask
lower_blue = np.array([0, 0, 100])
upper_blue = np.array([30, 255, 255])
mask = cv2.inRange(hsv, lower_blue, upper_blue).view(bool)
# add luminous gray
mask |= (hsv[:, :, 1] < 10) & (hsv[:, :, 2] > 150)
mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180)
mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220)
# Morphological operations
kernel = np.ones((5, 5), np.uint8)
mask2 = ndimage.binary_opening(mask, structure=kernel)
# keep only largest CC
_, labels, stats, _ = cv2.connectedComponentsWithStats(mask2.view(np.uint8), connectivity=8)
cc_sizes = stats[1:, cv2.CC_STAT_AREA]
order = cc_sizes.argsort()[::-1] # bigger first
i = 0
selection = []
while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2:
selection.append(1 + order[i])
i += 1
mask3 = np.in1d(labels, selection).reshape(labels.shape)
# Apply mask
return torch.from_numpy(mask3)
|