Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import torch | |
import tqdm | |
from ...models.unet_1d import UNet1DModel | |
from ...pipelines import DiffusionPipeline | |
from ...utils import randn_tensor | |
from ...utils.dummy_pt_objects import DDPMScheduler | |
class ValueGuidedRLPipeline(DiffusionPipeline): | |
r""" | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Pipeline for sampling actions from a diffusion model trained to predict sequences of states. | |
Original implementation inspired by this repository: https://github.com/jannerm/diffuser. | |
Parameters: | |
value_function ([`UNet1DModel`]): A specialized UNet for fine-tuning trajectories base on reward. | |
unet ([`UNet1DModel`]): U-Net architecture to denoise the encoded trajectories. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this | |
application is [`DDPMScheduler`]. | |
env: An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models. | |
""" | |
def __init__( | |
self, | |
value_function: UNet1DModel, | |
unet: UNet1DModel, | |
scheduler: DDPMScheduler, | |
env, | |
): | |
super().__init__() | |
self.value_function = value_function | |
self.unet = unet | |
self.scheduler = scheduler | |
self.env = env | |
self.data = env.get_dataset() | |
self.means = {} | |
for key in self.data.keys(): | |
try: | |
self.means[key] = self.data[key].mean() | |
except: # noqa: E722 | |
pass | |
self.stds = {} | |
for key in self.data.keys(): | |
try: | |
self.stds[key] = self.data[key].std() | |
except: # noqa: E722 | |
pass | |
self.state_dim = env.observation_space.shape[0] | |
self.action_dim = env.action_space.shape[0] | |
def normalize(self, x_in, key): | |
return (x_in - self.means[key]) / self.stds[key] | |
def de_normalize(self, x_in, key): | |
return x_in * self.stds[key] + self.means[key] | |
def to_torch(self, x_in): | |
if type(x_in) is dict: | |
return {k: self.to_torch(v) for k, v in x_in.items()} | |
elif torch.is_tensor(x_in): | |
return x_in.to(self.unet.device) | |
return torch.tensor(x_in, device=self.unet.device) | |
def reset_x0(self, x_in, cond, act_dim): | |
for key, val in cond.items(): | |
x_in[:, key, act_dim:] = val.clone() | |
return x_in | |
def run_diffusion(self, x, conditions, n_guide_steps, scale): | |
batch_size = x.shape[0] | |
y = None | |
for i in tqdm.tqdm(self.scheduler.timesteps): | |
# create batch of timesteps to pass into model | |
timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long) | |
for _ in range(n_guide_steps): | |
with torch.enable_grad(): | |
x.requires_grad_() | |
# permute to match dimension for pre-trained models | |
y = self.value_function(x.permute(0, 2, 1), timesteps).sample | |
grad = torch.autograd.grad([y.sum()], [x])[0] | |
posterior_variance = self.scheduler._get_variance(i) | |
model_std = torch.exp(0.5 * posterior_variance) | |
grad = model_std * grad | |
grad[timesteps < 2] = 0 | |
x = x.detach() | |
x = x + scale * grad | |
x = self.reset_x0(x, conditions, self.action_dim) | |
prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1) | |
# TODO: verify deprecation of this kwarg | |
x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"] | |
# apply conditions to the trajectory (set the initial state) | |
x = self.reset_x0(x, conditions, self.action_dim) | |
x = self.to_torch(x) | |
return x, y | |
def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1): | |
# normalize the observations and create batch dimension | |
obs = self.normalize(obs, "observations") | |
obs = obs[None].repeat(batch_size, axis=0) | |
conditions = {0: self.to_torch(obs)} | |
shape = (batch_size, planning_horizon, self.state_dim + self.action_dim) | |
# generate initial noise and apply our conditions (to make the trajectories start at current state) | |
x1 = randn_tensor(shape, device=self.unet.device) | |
x = self.reset_x0(x1, conditions, self.action_dim) | |
x = self.to_torch(x) | |
# run the diffusion process | |
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale) | |
# sort output trajectories by value | |
sorted_idx = y.argsort(0, descending=True).squeeze() | |
sorted_values = x[sorted_idx] | |
actions = sorted_values[:, :, : self.action_dim] | |
actions = actions.detach().cpu().numpy() | |
denorm_actions = self.de_normalize(actions, key="actions") | |
# select the action with the highest value | |
if y is not None: | |
selected_index = 0 | |
else: | |
# if we didn't run value guiding, select a random action | |
selected_index = np.random.randint(0, batch_size) | |
denorm_actions = denorm_actions[selected_index, 0] | |
return denorm_actions | |