Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 NVIDIA and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import flax | |
import jax.numpy as jnp | |
from jax import random | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import BaseOutput | |
from .scheduling_utils_flax import FlaxSchedulerMixin | |
class KarrasVeSchedulerState: | |
# setable values | |
num_inference_steps: Optional[int] = None | |
timesteps: Optional[jnp.ndarray] = None | |
schedule: Optional[jnp.ndarray] = None # sigma(t_i) | |
def create(cls): | |
return cls() | |
class FlaxKarrasVeOutput(BaseOutput): | |
""" | |
Output class for the scheduler's step function output. | |
Args: | |
prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
derivative (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): | |
Derivative of predicted original image sample (x_0). | |
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. | |
""" | |
prev_sample: jnp.ndarray | |
derivative: jnp.ndarray | |
state: KarrasVeSchedulerState | |
class FlaxKarrasVeScheduler(FlaxSchedulerMixin, ConfigMixin): | |
""" | |
Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and | |
the VE column of Table 1 from [1] for reference. | |
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." | |
https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic | |
differential equations." https://arxiv.org/abs/2011.13456 | |
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
[`~SchedulerMixin.from_pretrained`] functions. | |
For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of | |
Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the | |
optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. | |
Args: | |
sigma_min (`float`): minimum noise magnitude | |
sigma_max (`float`): maximum noise magnitude | |
s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. | |
A reasonable range is [1.000, 1.011]. | |
s_churn (`float`): the parameter controlling the overall amount of stochasticity. | |
A reasonable range is [0, 100]. | |
s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). | |
A reasonable range is [0, 10]. | |
s_max (`float`): the end value of the sigma range where we add noise. | |
A reasonable range is [0.2, 80]. | |
""" | |
def has_state(self): | |
return True | |
def __init__( | |
self, | |
sigma_min: float = 0.02, | |
sigma_max: float = 100, | |
s_noise: float = 1.007, | |
s_churn: float = 80, | |
s_min: float = 0.05, | |
s_max: float = 50, | |
): | |
pass | |
def create_state(self): | |
return KarrasVeSchedulerState.create() | |
def set_timesteps( | |
self, state: KarrasVeSchedulerState, num_inference_steps: int, shape: Tuple = () | |
) -> KarrasVeSchedulerState: | |
""" | |
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
state (`KarrasVeSchedulerState`): | |
the `FlaxKarrasVeScheduler` state data class. | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
""" | |
timesteps = jnp.arange(0, num_inference_steps)[::-1].copy() | |
schedule = [ | |
( | |
self.config.sigma_max**2 | |
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) | |
) | |
for i in timesteps | |
] | |
return state.replace( | |
num_inference_steps=num_inference_steps, | |
schedule=jnp.array(schedule, dtype=jnp.float32), | |
timesteps=timesteps, | |
) | |
def add_noise_to_input( | |
self, | |
state: KarrasVeSchedulerState, | |
sample: jnp.ndarray, | |
sigma: float, | |
key: random.KeyArray, | |
) -> Tuple[jnp.ndarray, float]: | |
""" | |
Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a | |
higher noise level sigma_hat = sigma_i + gamma_i*sigma_i. | |
TODO Args: | |
""" | |
if self.config.s_min <= sigma <= self.config.s_max: | |
gamma = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1) | |
else: | |
gamma = 0 | |
# sample eps ~ N(0, S_noise^2 * I) | |
key = random.split(key, num=1) | |
eps = self.config.s_noise * random.normal(key=key, shape=sample.shape) | |
sigma_hat = sigma + gamma * sigma | |
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) | |
return sample_hat, sigma_hat | |
def step( | |
self, | |
state: KarrasVeSchedulerState, | |
model_output: jnp.ndarray, | |
sigma_hat: float, | |
sigma_prev: float, | |
sample_hat: jnp.ndarray, | |
return_dict: bool = True, | |
) -> Union[FlaxKarrasVeOutput, Tuple]: | |
""" | |
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. | |
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. | |
sigma_hat (`float`): TODO | |
sigma_prev (`float`): TODO | |
sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO | |
return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class | |
Returns: | |
[`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] or `tuple`: Updated sample in the diffusion | |
chain and derivative. [`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] if `return_dict` is | |
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
""" | |
pred_original_sample = sample_hat + sigma_hat * model_output | |
derivative = (sample_hat - pred_original_sample) / sigma_hat | |
sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative | |
if not return_dict: | |
return (sample_prev, derivative, state) | |
return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) | |
def step_correct( | |
self, | |
state: KarrasVeSchedulerState, | |
model_output: jnp.ndarray, | |
sigma_hat: float, | |
sigma_prev: float, | |
sample_hat: jnp.ndarray, | |
sample_prev: jnp.ndarray, | |
derivative: jnp.ndarray, | |
return_dict: bool = True, | |
) -> Union[FlaxKarrasVeOutput, Tuple]: | |
""" | |
Correct the predicted sample based on the output model_output of the network. TODO complete description | |
Args: | |
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. | |
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. | |
sigma_hat (`float`): TODO | |
sigma_prev (`float`): TODO | |
sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO | |
sample_prev (`torch.FloatTensor` or `np.ndarray`): TODO | |
derivative (`torch.FloatTensor` or `np.ndarray`): TODO | |
return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class | |
Returns: | |
prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO | |
""" | |
pred_original_sample = sample_prev + sigma_prev * model_output | |
derivative_corr = (sample_prev - pred_original_sample) / sigma_prev | |
sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) | |
if not return_dict: | |
return (sample_prev, derivative, state) | |
return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) | |
def add_noise(self, state: KarrasVeSchedulerState, original_samples, noise, timesteps): | |
raise NotImplementedError() | |