Spaces:
Running
on
Zero
Running
on
Zero
from typing import Callable, List, Optional, Union | |
import torch | |
from ...models import UNet2DModel | |
from ...schedulers import CMStochasticIterativeScheduler | |
from ...utils import ( | |
is_accelerate_available, | |
is_accelerate_version, | |
logging, | |
randn_tensor, | |
replace_example_docstring, | |
) | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import ConsistencyModelPipeline | |
>>> device = "cuda" | |
>>> # Load the cd_imagenet64_l2 checkpoint. | |
>>> model_id_or_path = "openai/diffusers-cd_imagenet64_l2" | |
>>> pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) | |
>>> pipe.to(device) | |
>>> # Onestep Sampling | |
>>> image = pipe(num_inference_steps=1).images[0] | |
>>> image.save("cd_imagenet64_l2_onestep_sample.png") | |
>>> # Onestep sampling, class-conditional image generation | |
>>> # ImageNet-64 class label 145 corresponds to king penguins | |
>>> image = pipe(num_inference_steps=1, class_labels=145).images[0] | |
>>> image.save("cd_imagenet64_l2_onestep_sample_penguin.png") | |
>>> # Multistep sampling, class-conditional image generation | |
>>> # Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo: | |
>>> # https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L77 | |
>>> image = pipe(num_inference_steps=None, timesteps=[22, 0], class_labels=145).images[0] | |
>>> image.save("cd_imagenet64_l2_multistep_sample_penguin.png") | |
``` | |
""" | |
class ConsistencyModelPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for consistency models for unconditional or class-conditional image generation, as introduced in [1]. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
[1] Song, Yang and Dhariwal, Prafulla and Chen, Mark and Sutskever, Ilya. "Consistency Models" | |
https://arxiv.org/pdf/2303.01469 | |
Args: | |
unet ([`UNet2DModel`]): | |
Unconditional or class-conditional U-Net architecture to denoise image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the image latents. Currently only compatible | |
with [`CMStochasticIterativeScheduler`]. | |
""" | |
def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None: | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.safety_checker = None | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
Note that offloading happens on a submodule basis. Memory savings are higher than with | |
`enable_model_cpu_offload`, but performance is lower. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
for cpu_offloaded_model in [self.unet]: | |
cpu_offload(cpu_offloaded_model, device) | |
if self.safety_checker is not None: | |
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
hook = None | |
for cpu_offloaded_model in [self.unet]: | |
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
if self.safety_checker is not None: | |
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels, height, width) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Follows diffusers.VaeImageProcessor.postprocess | |
def postprocess_image(self, sample: torch.FloatTensor, output_type: str = "pil"): | |
if output_type not in ["pt", "np", "pil"]: | |
raise ValueError( | |
f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']" | |
) | |
# Equivalent to diffusers.VaeImageProcessor.denormalize | |
sample = (sample / 2 + 0.5).clamp(0, 1) | |
if output_type == "pt": | |
return sample | |
# Equivalent to diffusers.VaeImageProcessor.pt_to_numpy | |
sample = sample.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "np": | |
return sample | |
# Output_type must be 'pil' | |
sample = self.numpy_to_pil(sample) | |
return sample | |
def prepare_class_labels(self, batch_size, device, class_labels=None): | |
if self.unet.config.num_class_embeds is not None: | |
if isinstance(class_labels, list): | |
class_labels = torch.tensor(class_labels, dtype=torch.int) | |
elif isinstance(class_labels, int): | |
assert batch_size == 1, "Batch size must be 1 if classes is an int" | |
class_labels = torch.tensor([class_labels], dtype=torch.int) | |
elif class_labels is None: | |
# Randomly generate batch_size class labels | |
# TODO: should use generator here? int analogue of randn_tensor is not exposed in ...utils | |
class_labels = torch.randint(0, self.unet.config.num_class_embeds, size=(batch_size,)) | |
class_labels = class_labels.to(device) | |
else: | |
class_labels = None | |
return class_labels | |
def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps): | |
if num_inference_steps is None and timesteps is None: | |
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.") | |
if num_inference_steps is not None and timesteps is not None: | |
logger.warning( | |
f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;" | |
" `timesteps` will be used over `num_inference_steps`." | |
) | |
if latents is not None: | |
expected_shape = (batch_size, 3, img_size, img_size) | |
if latents.shape != expected_shape: | |
raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def __call__( | |
self, | |
batch_size: int = 1, | |
class_labels: Optional[Union[torch.Tensor, List[int], int]] = None, | |
num_inference_steps: int = 1, | |
timesteps: List[int] = None, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
Args: | |
batch_size (`int`, *optional*, defaults to 1): | |
The number of images to generate. | |
class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*): | |
Optional class labels for conditioning class-conditional consistency models. Will not be used if the | |
model is not class-conditional. | |
num_inference_steps (`int`, *optional*, defaults to 1): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
timesteps are used. Must be in descending order. | |
generator (`torch.Generator`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is | |
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. | |
""" | |
# 0. Prepare call parameters | |
img_size = self.unet.config.sample_size | |
device = self._execution_device | |
# 1. Check inputs | |
self.check_inputs(num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps) | |
# 2. Prepare image latents | |
# Sample image latents x_0 ~ N(0, sigma_0^2 * I) | |
sample = self.prepare_latents( | |
batch_size=batch_size, | |
num_channels=self.unet.config.in_channels, | |
height=img_size, | |
width=img_size, | |
dtype=self.unet.dtype, | |
device=device, | |
generator=generator, | |
latents=latents, | |
) | |
# 3. Handle class_labels for class-conditional models | |
class_labels = self.prepare_class_labels(batch_size, device, class_labels=class_labels) | |
# 4. Prepare timesteps | |
if timesteps is not None: | |
self.scheduler.set_timesteps(timesteps=timesteps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
self.scheduler.set_timesteps(num_inference_steps) | |
timesteps = self.scheduler.timesteps | |
# 5. Denoising loop | |
# Multistep sampling: implements Algorithm 1 in the paper | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
scaled_sample = self.scheduler.scale_model_input(sample, t) | |
model_output = self.unet(scaled_sample, t, class_labels=class_labels, return_dict=False)[0] | |
sample = self.scheduler.step(model_output, t, sample, generator=generator)[0] | |
# call the callback, if provided | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, sample) | |
# 6. Post-process image sample | |
image = self.postprocess_image(sample, output_type=output_type) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |