Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Conversion script for the Stable Diffusion checkpoints.""" | |
import re | |
from io import BytesIO | |
from typing import Optional | |
import requests | |
import torch | |
from transformers import ( | |
AutoFeatureExtractor, | |
BertTokenizerFast, | |
CLIPImageProcessor, | |
CLIPTextConfig, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionConfig, | |
CLIPVisionModelWithProjection, | |
) | |
from ...models import ( | |
AutoencoderKL, | |
ControlNetModel, | |
PriorTransformer, | |
UNet2DConditionModel, | |
) | |
from ...schedulers import ( | |
DDIMScheduler, | |
DDPMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
UnCLIPScheduler, | |
) | |
from ...utils import is_accelerate_available, is_omegaconf_available, is_safetensors_available, logging | |
from ...utils.import_utils import BACKENDS_MAPPING | |
from ..latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel | |
from ..paint_by_example import PaintByExampleImageEncoder | |
from ..pipeline_utils import DiffusionPipeline | |
from .safety_checker import StableDiffusionSafetyChecker | |
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
from accelerate.utils import set_module_tensor_to_device | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item.replace("in_layers.0", "norm1") | |
new_item = new_item.replace("in_layers.2", "conv1") | |
new_item = new_item.replace("out_layers.0", "norm2") | |
new_item = new_item.replace("out_layers.3", "conv2") | |
new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
new_item = new_item.replace("skip_connection", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
# new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
# new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("norm.weight", "group_norm.weight") | |
new_item = new_item.replace("norm.bias", "group_norm.bias") | |
new_item = new_item.replace("q.weight", "to_q.weight") | |
new_item = new_item.replace("q.bias", "to_q.bias") | |
new_item = new_item.replace("k.weight", "to_k.weight") | |
new_item = new_item.replace("k.bias", "to_k.bias") | |
new_item = new_item.replace("v.weight", "to_v.weight") | |
new_item = new_item.replace("v.bias", "to_v.bias") | |
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") | |
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def assign_to_checkpoint( | |
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
): | |
""" | |
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
attention layers, and takes into account additional replacements that may arise. | |
Assigns the weights to the new checkpoint. | |
""" | |
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
# Splits the attention layers into three variables. | |
if attention_paths_to_split is not None: | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape) | |
checkpoint[path_map["key"]] = key.reshape(target_shape) | |
checkpoint[path_map["value"]] = value.reshape(target_shape) | |
for path in paths: | |
new_path = path["new"] | |
# These have already been assigned | |
if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
continue | |
# Global renaming happens here | |
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path) | |
shape = old_checkpoint[path["old"]].shape | |
if is_attn_weight and len(shape) == 3: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
elif is_attn_weight and len(shape) == 4: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] | |
else: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
if controlnet: | |
unet_params = original_config.model.params.control_stage_config.params | |
else: | |
if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None: | |
unet_params = original_config.model.params.unet_config.params | |
else: | |
unet_params = original_config.model.params.network_config.params | |
vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
if unet_params.transformer_depth is not None: | |
transformer_layers_per_block = ( | |
unet_params.transformer_depth | |
if isinstance(unet_params.transformer_depth, int) | |
else list(unet_params.transformer_depth) | |
) | |
else: | |
transformer_layers_per_block = 1 | |
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) | |
head_dim = unet_params.num_heads if "num_heads" in unet_params else None | |
use_linear_projection = ( | |
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False | |
) | |
if use_linear_projection: | |
# stable diffusion 2-base-512 and 2-768 | |
if head_dim is None: | |
head_dim_mult = unet_params.model_channels // unet_params.num_head_channels | |
head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)] | |
class_embed_type = None | |
addition_embed_type = None | |
addition_time_embed_dim = None | |
projection_class_embeddings_input_dim = None | |
context_dim = None | |
if unet_params.context_dim is not None: | |
context_dim = ( | |
unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0] | |
) | |
if "num_classes" in unet_params: | |
if unet_params.num_classes == "sequential": | |
if context_dim in [2048, 1280]: | |
# SDXL | |
addition_embed_type = "text_time" | |
addition_time_embed_dim = 256 | |
else: | |
class_embed_type = "projection" | |
assert "adm_in_channels" in unet_params | |
projection_class_embeddings_input_dim = unet_params.adm_in_channels | |
else: | |
raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}") | |
config = { | |
"sample_size": image_size // vae_scale_factor, | |
"in_channels": unet_params.in_channels, | |
"down_block_types": tuple(down_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"layers_per_block": unet_params.num_res_blocks, | |
"cross_attention_dim": context_dim, | |
"attention_head_dim": head_dim, | |
"use_linear_projection": use_linear_projection, | |
"class_embed_type": class_embed_type, | |
"addition_embed_type": addition_embed_type, | |
"addition_time_embed_dim": addition_time_embed_dim, | |
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, | |
"transformer_layers_per_block": transformer_layers_per_block, | |
} | |
if controlnet: | |
config["conditioning_channels"] = unet_params.hint_channels | |
else: | |
config["out_channels"] = unet_params.out_channels | |
config["up_block_types"] = tuple(up_block_types) | |
return config | |
def create_vae_diffusers_config(original_config, image_size: int): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
_ = original_config.model.params.first_stage_config.params.embed_dim | |
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = { | |
"sample_size": image_size, | |
"in_channels": vae_params.in_channels, | |
"out_channels": vae_params.out_ch, | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"latent_channels": vae_params.z_channels, | |
"layers_per_block": vae_params.num_res_blocks, | |
} | |
return config | |
def create_diffusers_schedular(original_config): | |
schedular = DDIMScheduler( | |
num_train_timesteps=original_config.model.params.timesteps, | |
beta_start=original_config.model.params.linear_start, | |
beta_end=original_config.model.params.linear_end, | |
beta_schedule="scaled_linear", | |
) | |
return schedular | |
def create_ldm_bert_config(original_config): | |
bert_params = original_config.model.parms.cond_stage_config.params | |
config = LDMBertConfig( | |
d_model=bert_params.n_embed, | |
encoder_layers=bert_params.n_layer, | |
encoder_ffn_dim=bert_params.n_embed * 4, | |
) | |
return config | |
def convert_ldm_unet_checkpoint( | |
checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False | |
): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. | |
""" | |
if skip_extract_state_dict: | |
unet_state_dict = checkpoint | |
else: | |
# extract state_dict for UNet | |
unet_state_dict = {} | |
keys = list(checkpoint.keys()) | |
if controlnet: | |
unet_key = "control_model." | |
else: | |
unet_key = "model.diffusion_model." | |
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.") | |
logger.warning( | |
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith("model.diffusion_model"): | |
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
else: | |
if sum(k.startswith("model_ema") for k in keys) > 100: | |
logger.warning( | |
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith(unet_key): | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
new_checkpoint = {} | |
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
if config["class_embed_type"] is None: | |
# No parameters to port | |
... | |
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection": | |
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] | |
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] | |
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] | |
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] | |
else: | |
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") | |
if config["addition_embed_type"] == "text_time": | |
new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] | |
new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] | |
new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] | |
new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] | |
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
if not controlnet: | |
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
input_blocks = { | |
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
middle_blocks = { | |
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
# Retrieves the keys for the output blocks only | |
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
output_blocks = { | |
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
for layer_id in range(num_output_blocks) | |
} | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
resnet_0 = middle_blocks[0] | |
attentions = middle_blocks[1] | |
resnet_1 = middle_blocks[2] | |
resnet_0_paths = renew_resnet_paths(resnet_0) | |
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
resnet_1_paths = renew_resnet_paths(resnet_1) | |
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
attentions_paths = renew_attention_paths(attentions) | |
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
for i in range(num_output_blocks): | |
block_id = i // (config["layers_per_block"] + 1) | |
layer_in_block_id = i % (config["layers_per_block"] + 1) | |
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
output_block_list = {} | |
for layer in output_block_layers: | |
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
if layer_id in output_block_list: | |
output_block_list[layer_id].append(layer_name) | |
else: | |
output_block_list[layer_id] = [layer_name] | |
if len(output_block_list) > 1: | |
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
resnet_0_paths = renew_resnet_paths(resnets) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} | |
if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.bias" | |
] | |
# Clear attentions as they have been attributed above. | |
if len(attentions) == 2: | |
attentions = [] | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = { | |
"old": f"output_blocks.{i}.1", | |
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
else: | |
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
for path in resnet_0_paths: | |
old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
new_checkpoint[new_path] = unet_state_dict[old_path] | |
if controlnet: | |
# conditioning embedding | |
orig_index = 0 | |
new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.weight" | |
) | |
new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.bias" | |
) | |
orig_index += 2 | |
diffusers_index = 0 | |
while diffusers_index < 6: | |
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.weight" | |
) | |
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.bias" | |
) | |
diffusers_index += 1 | |
orig_index += 2 | |
new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.weight" | |
) | |
new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop( | |
f"input_hint_block.{orig_index}.bias" | |
) | |
# down blocks | |
for i in range(num_input_blocks): | |
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight") | |
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias") | |
# mid block | |
new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight") | |
new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias") | |
return new_checkpoint | |
def convert_ldm_vae_checkpoint(checkpoint, config): | |
# extract state dict for VAE | |
vae_state_dict = {} | |
vae_key = "first_stage_model." | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(vae_key): | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
def convert_ldm_bert_checkpoint(checkpoint, config): | |
def _copy_attn_layer(hf_attn_layer, pt_attn_layer): | |
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight | |
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight | |
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight | |
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight | |
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias | |
def _copy_linear(hf_linear, pt_linear): | |
hf_linear.weight = pt_linear.weight | |
hf_linear.bias = pt_linear.bias | |
def _copy_layer(hf_layer, pt_layer): | |
# copy layer norms | |
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0]) | |
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0]) | |
# copy attn | |
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1]) | |
# copy MLP | |
pt_mlp = pt_layer[1][1] | |
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0]) | |
_copy_linear(hf_layer.fc2, pt_mlp.net[2]) | |
def _copy_layers(hf_layers, pt_layers): | |
for i, hf_layer in enumerate(hf_layers): | |
if i != 0: | |
i += i | |
pt_layer = pt_layers[i : i + 2] | |
_copy_layer(hf_layer, pt_layer) | |
hf_model = LDMBertModel(config).eval() | |
# copy embeds | |
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight | |
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight | |
# copy layer norm | |
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm) | |
# copy hidden layers | |
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers) | |
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits) | |
return hf_model | |
def convert_ldm_clip_checkpoint(checkpoint, local_files_only=False, text_encoder=None): | |
if text_encoder is None: | |
config_name = "openai/clip-vit-large-patch14" | |
config = CLIPTextConfig.from_pretrained(config_name) | |
with init_empty_weights(): | |
text_model = CLIPTextModel(config) | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
remove_prefixes = ["cond_stage_model.transformer", "conditioner.embedders.0.transformer"] | |
for key in keys: | |
for prefix in remove_prefixes: | |
if key.startswith(prefix): | |
text_model_dict[key[len(prefix + ".") :]] = checkpoint[key] | |
for param_name, param in text_model_dict.items(): | |
set_module_tensor_to_device(text_model, param_name, "cpu", value=param) | |
return text_model | |
textenc_conversion_lst = [ | |
("positional_embedding", "text_model.embeddings.position_embedding.weight"), | |
("token_embedding.weight", "text_model.embeddings.token_embedding.weight"), | |
("ln_final.weight", "text_model.final_layer_norm.weight"), | |
("ln_final.bias", "text_model.final_layer_norm.bias"), | |
("text_projection", "text_projection.weight"), | |
] | |
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst} | |
textenc_transformer_conversion_lst = [ | |
# (stable-diffusion, HF Diffusers) | |
("resblocks.", "text_model.encoder.layers."), | |
("ln_1", "layer_norm1"), | |
("ln_2", "layer_norm2"), | |
(".c_fc.", ".fc1."), | |
(".c_proj.", ".fc2."), | |
(".attn", ".self_attn"), | |
("ln_final.", "transformer.text_model.final_layer_norm."), | |
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), | |
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), | |
] | |
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst} | |
textenc_pattern = re.compile("|".join(protected.keys())) | |
def convert_paint_by_example_checkpoint(checkpoint): | |
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14") | |
model = PaintByExampleImageEncoder(config) | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
for key in keys: | |
if key.startswith("cond_stage_model.transformer"): | |
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] | |
# load clip vision | |
model.model.load_state_dict(text_model_dict) | |
# load mapper | |
keys_mapper = { | |
k[len("cond_stage_model.mapper.res") :]: v | |
for k, v in checkpoint.items() | |
if k.startswith("cond_stage_model.mapper") | |
} | |
MAPPING = { | |
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"], | |
"attn.c_proj": ["attn1.to_out.0"], | |
"ln_1": ["norm1"], | |
"ln_2": ["norm3"], | |
"mlp.c_fc": ["ff.net.0.proj"], | |
"mlp.c_proj": ["ff.net.2"], | |
} | |
mapped_weights = {} | |
for key, value in keys_mapper.items(): | |
prefix = key[: len("blocks.i")] | |
suffix = key.split(prefix)[-1].split(".")[-1] | |
name = key.split(prefix)[-1].split(suffix)[0][1:-1] | |
mapped_names = MAPPING[name] | |
num_splits = len(mapped_names) | |
for i, mapped_name in enumerate(mapped_names): | |
new_name = ".".join([prefix, mapped_name, suffix]) | |
shape = value.shape[0] // num_splits | |
mapped_weights[new_name] = value[i * shape : (i + 1) * shape] | |
model.mapper.load_state_dict(mapped_weights) | |
# load final layer norm | |
model.final_layer_norm.load_state_dict( | |
{ | |
"bias": checkpoint["cond_stage_model.final_ln.bias"], | |
"weight": checkpoint["cond_stage_model.final_ln.weight"], | |
} | |
) | |
# load final proj | |
model.proj_out.load_state_dict( | |
{ | |
"bias": checkpoint["proj_out.bias"], | |
"weight": checkpoint["proj_out.weight"], | |
} | |
) | |
# load uncond vector | |
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"]) | |
return model | |
def convert_open_clip_checkpoint( | |
checkpoint, config_name, prefix="cond_stage_model.model.", has_projection=False, **config_kwargs | |
): | |
# text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder") | |
# text_model = CLIPTextModelWithProjection.from_pretrained( | |
# "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", projection_dim=1280 | |
# ) | |
config = CLIPTextConfig.from_pretrained(config_name, **config_kwargs) | |
with init_empty_weights(): | |
text_model = CLIPTextModelWithProjection(config) if has_projection else CLIPTextModel(config) | |
keys = list(checkpoint.keys()) | |
keys_to_ignore = [] | |
if config_name == "stabilityai/stable-diffusion-2" and config.num_hidden_layers == 23: | |
# make sure to remove all keys > 22 | |
keys_to_ignore += [k for k in keys if k.startswith("cond_stage_model.model.transformer.resblocks.23")] | |
keys_to_ignore += ["cond_stage_model.model.text_projection"] | |
text_model_dict = {} | |
if prefix + "text_projection" in checkpoint: | |
d_model = int(checkpoint[prefix + "text_projection"].shape[0]) | |
else: | |
d_model = 1024 | |
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids") | |
for key in keys: | |
if key in keys_to_ignore: | |
continue | |
if key[len(prefix) :] in textenc_conversion_map: | |
if key.endswith("text_projection"): | |
value = checkpoint[key].T | |
else: | |
value = checkpoint[key] | |
text_model_dict[textenc_conversion_map[key[len(prefix) :]]] = value | |
if key.startswith(prefix + "transformer."): | |
new_key = key[len(prefix + "transformer.") :] | |
if new_key.endswith(".in_proj_weight"): | |
new_key = new_key[: -len(".in_proj_weight")] | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :] | |
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :] | |
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :] | |
elif new_key.endswith(".in_proj_bias"): | |
new_key = new_key[: -len(".in_proj_bias")] | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model] | |
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2] | |
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :] | |
else: | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key] = checkpoint[key] | |
for param_name, param in text_model_dict.items(): | |
set_module_tensor_to_device(text_model, param_name, "cpu", value=param) | |
return text_model | |
def stable_unclip_image_encoder(original_config): | |
""" | |
Returns the image processor and clip image encoder for the img2img unclip pipeline. | |
We currently know of two types of stable unclip models which separately use the clip and the openclip image | |
encoders. | |
""" | |
image_embedder_config = original_config.model.params.embedder_config | |
sd_clip_image_embedder_class = image_embedder_config.target | |
sd_clip_image_embedder_class = sd_clip_image_embedder_class.split(".")[-1] | |
if sd_clip_image_embedder_class == "ClipImageEmbedder": | |
clip_model_name = image_embedder_config.params.model | |
if clip_model_name == "ViT-L/14": | |
feature_extractor = CLIPImageProcessor() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
else: | |
raise NotImplementedError(f"Unknown CLIP checkpoint name in stable diffusion checkpoint {clip_model_name}") | |
elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder": | |
feature_extractor = CLIPImageProcessor() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") | |
else: | |
raise NotImplementedError( | |
f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}" | |
) | |
return feature_extractor, image_encoder | |
def stable_unclip_image_noising_components( | |
original_config, clip_stats_path: Optional[str] = None, device: Optional[str] = None | |
): | |
""" | |
Returns the noising components for the img2img and txt2img unclip pipelines. | |
Converts the stability noise augmentor into | |
1. a `StableUnCLIPImageNormalizer` for holding the CLIP stats | |
2. a `DDPMScheduler` for holding the noise schedule | |
If the noise augmentor config specifies a clip stats path, the `clip_stats_path` must be provided. | |
""" | |
noise_aug_config = original_config.model.params.noise_aug_config | |
noise_aug_class = noise_aug_config.target | |
noise_aug_class = noise_aug_class.split(".")[-1] | |
if noise_aug_class == "CLIPEmbeddingNoiseAugmentation": | |
noise_aug_config = noise_aug_config.params | |
embedding_dim = noise_aug_config.timestep_dim | |
max_noise_level = noise_aug_config.noise_schedule_config.timesteps | |
beta_schedule = noise_aug_config.noise_schedule_config.beta_schedule | |
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedding_dim) | |
image_noising_scheduler = DDPMScheduler(num_train_timesteps=max_noise_level, beta_schedule=beta_schedule) | |
if "clip_stats_path" in noise_aug_config: | |
if clip_stats_path is None: | |
raise ValueError("This stable unclip config requires a `clip_stats_path`") | |
clip_mean, clip_std = torch.load(clip_stats_path, map_location=device) | |
clip_mean = clip_mean[None, :] | |
clip_std = clip_std[None, :] | |
clip_stats_state_dict = { | |
"mean": clip_mean, | |
"std": clip_std, | |
} | |
image_normalizer.load_state_dict(clip_stats_state_dict) | |
else: | |
raise NotImplementedError(f"Unknown noise augmentor class: {noise_aug_class}") | |
return image_normalizer, image_noising_scheduler | |
def convert_controlnet_checkpoint( | |
checkpoint, | |
original_config, | |
checkpoint_path, | |
image_size, | |
upcast_attention, | |
extract_ema, | |
use_linear_projection=None, | |
cross_attention_dim=None, | |
): | |
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True) | |
ctrlnet_config["upcast_attention"] = upcast_attention | |
ctrlnet_config.pop("sample_size") | |
if use_linear_projection is not None: | |
ctrlnet_config["use_linear_projection"] = use_linear_projection | |
if cross_attention_dim is not None: | |
ctrlnet_config["cross_attention_dim"] = cross_attention_dim | |
controlnet_model = ControlNetModel(**ctrlnet_config) | |
# Some controlnet ckpt files are distributed independently from the rest of the | |
# model components i.e. https://huggingface.co/thibaud/controlnet-sd21/ | |
if "time_embed.0.weight" in checkpoint: | |
skip_extract_state_dict = True | |
else: | |
skip_extract_state_dict = False | |
converted_ctrl_checkpoint = convert_ldm_unet_checkpoint( | |
checkpoint, | |
ctrlnet_config, | |
path=checkpoint_path, | |
extract_ema=extract_ema, | |
controlnet=True, | |
skip_extract_state_dict=skip_extract_state_dict, | |
) | |
controlnet_model.load_state_dict(converted_ctrl_checkpoint) | |
return controlnet_model | |
def download_from_original_stable_diffusion_ckpt( | |
checkpoint_path: str, | |
original_config_file: str = None, | |
image_size: Optional[int] = None, | |
prediction_type: str = None, | |
model_type: str = None, | |
extract_ema: bool = False, | |
scheduler_type: str = "pndm", | |
num_in_channels: Optional[int] = None, | |
upcast_attention: Optional[bool] = None, | |
device: str = None, | |
from_safetensors: bool = False, | |
stable_unclip: Optional[str] = None, | |
stable_unclip_prior: Optional[str] = None, | |
clip_stats_path: Optional[str] = None, | |
controlnet: Optional[bool] = None, | |
load_safety_checker: bool = True, | |
pipeline_class: DiffusionPipeline = None, | |
local_files_only=False, | |
vae_path=None, | |
text_encoder=None, | |
tokenizer=None, | |
) -> DiffusionPipeline: | |
""" | |
Load a Stable Diffusion pipeline object from a CompVis-style `.ckpt`/`.safetensors` file and (ideally) a `.yaml` | |
config file. | |
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the | |
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is | |
recommended that you override the default values and/or supply an `original_config_file` wherever possible. | |
Args: | |
checkpoint_path (`str`): Path to `.ckpt` file. | |
original_config_file (`str`): | |
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be automatically | |
inferred by looking for a key that only exists in SD2.0 models. | |
image_size (`int`, *optional*, defaults to 512): | |
The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Diffusion v2 | |
Base. Use 768 for Stable Diffusion v2. | |
prediction_type (`str`, *optional*): | |
The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion v1.X and Stable | |
Diffusion v2 Base. Use `'v_prediction'` for Stable Diffusion v2. | |
num_in_channels (`int`, *optional*, defaults to None): | |
The number of input channels. If `None`, it will be automatically inferred. | |
scheduler_type (`str`, *optional*, defaults to 'pndm'): | |
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm", | |
"ddim"]`. | |
model_type (`str`, *optional*, defaults to `None`): | |
The pipeline type. `None` to automatically infer, or one of `["FrozenOpenCLIPEmbedder", | |
"FrozenCLIPEmbedder", "PaintByExample"]`. | |
is_img2img (`bool`, *optional*, defaults to `False`): | |
Whether the model should be loaded as an img2img pipeline. | |
extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for | |
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults to | |
`False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for | |
inference. Non-EMA weights are usually better to continue fine-tuning. | |
upcast_attention (`bool`, *optional*, defaults to `None`): | |
Whether the attention computation should always be upcasted. This is necessary when running stable | |
diffusion 2.1. | |
device (`str`, *optional*, defaults to `None`): | |
The device to use. Pass `None` to determine automatically. | |
from_safetensors (`str`, *optional*, defaults to `False`): | |
If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch. | |
load_safety_checker (`bool`, *optional*, defaults to `True`): | |
Whether to load the safety checker or not. Defaults to `True`. | |
pipeline_class (`str`, *optional*, defaults to `None`): | |
The pipeline class to use. Pass `None` to determine automatically. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether or not to only look at local files (i.e., do not try to download the model). | |
text_encoder (`CLIPTextModel`, *optional*, defaults to `None`): | |
An instance of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel) | |
to use, specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) | |
variant. If this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed. | |
tokenizer (`CLIPTokenizer`, *optional*, defaults to `None`): | |
An instance of | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer) | |
to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by itself, if | |
needed. | |
return: A StableDiffusionPipeline object representing the passed-in `.ckpt`/`.safetensors` file. | |
""" | |
# import pipelines here to avoid circular import error when using from_single_file method | |
from diffusers import ( | |
LDMTextToImagePipeline, | |
PaintByExamplePipeline, | |
StableDiffusionControlNetPipeline, | |
StableDiffusionInpaintPipeline, | |
StableDiffusionPipeline, | |
StableDiffusionXLImg2ImgPipeline, | |
StableDiffusionXLPipeline, | |
StableUnCLIPImg2ImgPipeline, | |
StableUnCLIPPipeline, | |
) | |
if pipeline_class is None: | |
pipeline_class = StableDiffusionPipeline | |
if prediction_type == "v-prediction": | |
prediction_type = "v_prediction" | |
if not is_omegaconf_available(): | |
raise ValueError(BACKENDS_MAPPING["omegaconf"][1]) | |
from omegaconf import OmegaConf | |
if from_safetensors: | |
if not is_safetensors_available(): | |
raise ValueError(BACKENDS_MAPPING["safetensors"][1]) | |
from safetensors.torch import load_file as safe_load | |
checkpoint = safe_load(checkpoint_path, device="cpu") | |
else: | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
else: | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
# Sometimes models don't have the global_step item | |
if "global_step" in checkpoint: | |
global_step = checkpoint["global_step"] | |
else: | |
logger.debug("global_step key not found in model") | |
global_step = None | |
# NOTE: this while loop isn't great but this controlnet checkpoint has one additional | |
# "state_dict" key https://huggingface.co/thibaud/controlnet-canny-sd21 | |
while "state_dict" in checkpoint: | |
checkpoint = checkpoint["state_dict"] | |
if original_config_file is None: | |
key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" | |
key_name_sd_xl_base = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias" | |
key_name_sd_xl_refiner = "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias" | |
# model_type = "v1" | |
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" | |
if key_name_v2_1 in checkpoint and checkpoint[key_name_v2_1].shape[-1] == 1024: | |
# model_type = "v2" | |
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml" | |
if global_step == 110000: | |
# v2.1 needs to upcast attention | |
upcast_attention = True | |
elif key_name_sd_xl_base in checkpoint: | |
# only base xl has two text embedders | |
config_url = "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml" | |
elif key_name_sd_xl_refiner in checkpoint: | |
# only refiner xl has embedder and one text embedders | |
config_url = "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_refiner.yaml" | |
original_config_file = BytesIO(requests.get(config_url).content) | |
original_config = OmegaConf.load(original_config_file) | |
# Convert the text model. | |
if ( | |
model_type is None | |
and "cond_stage_config" in original_config.model.params | |
and original_config.model.params.cond_stage_config is not None | |
): | |
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1] | |
logger.debug(f"no `model_type` given, `model_type` inferred as: {model_type}") | |
elif model_type is None and original_config.model.params.network_config is not None: | |
if original_config.model.params.network_config.params.context_dim == 2048: | |
model_type = "SDXL" | |
else: | |
model_type = "SDXL-Refiner" | |
if image_size is None: | |
image_size = 1024 | |
if num_in_channels is None and pipeline_class == StableDiffusionInpaintPipeline: | |
num_in_channels = 9 | |
elif num_in_channels is None: | |
num_in_channels = 4 | |
if "unet_config" in original_config.model.params: | |
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels | |
if ( | |
"parameterization" in original_config["model"]["params"] | |
and original_config["model"]["params"]["parameterization"] == "v" | |
): | |
if prediction_type is None: | |
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"` | |
# as it relies on a brittle global step parameter here | |
prediction_type = "epsilon" if global_step == 875000 else "v_prediction" | |
if image_size is None: | |
# NOTE: For stable diffusion 2 base one has to pass `image_size==512` | |
# as it relies on a brittle global step parameter here | |
image_size = 512 if global_step == 875000 else 768 | |
else: | |
if prediction_type is None: | |
prediction_type = "epsilon" | |
if image_size is None: | |
image_size = 512 | |
if controlnet is None: | |
controlnet = "control_stage_config" in original_config.model.params | |
if controlnet: | |
controlnet_model = convert_controlnet_checkpoint( | |
checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema | |
) | |
num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000 | |
if model_type in ["SDXL", "SDXL-Refiner"]: | |
scheduler_dict = { | |
"beta_schedule": "scaled_linear", | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"interpolation_type": "linear", | |
"num_train_timesteps": num_train_timesteps, | |
"prediction_type": "epsilon", | |
"sample_max_value": 1.0, | |
"set_alpha_to_one": False, | |
"skip_prk_steps": True, | |
"steps_offset": 1, | |
"timestep_spacing": "leading", | |
} | |
scheduler = EulerDiscreteScheduler.from_config(scheduler_dict) | |
scheduler_type = "euler" | |
else: | |
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 | |
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 | |
scheduler = DDIMScheduler( | |
beta_end=beta_end, | |
beta_schedule="scaled_linear", | |
beta_start=beta_start, | |
num_train_timesteps=num_train_timesteps, | |
steps_offset=1, | |
clip_sample=False, | |
set_alpha_to_one=False, | |
prediction_type=prediction_type, | |
) | |
# make sure scheduler works correctly with DDIM | |
scheduler.register_to_config(clip_sample=False) | |
if scheduler_type == "pndm": | |
config = dict(scheduler.config) | |
config["skip_prk_steps"] = True | |
scheduler = PNDMScheduler.from_config(config) | |
elif scheduler_type == "lms": | |
scheduler = LMSDiscreteScheduler.from_config(scheduler.config) | |
elif scheduler_type == "heun": | |
scheduler = HeunDiscreteScheduler.from_config(scheduler.config) | |
elif scheduler_type == "euler": | |
scheduler = EulerDiscreteScheduler.from_config(scheduler.config) | |
elif scheduler_type == "euler-ancestral": | |
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config) | |
elif scheduler_type == "dpm": | |
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) | |
elif scheduler_type == "ddim": | |
scheduler = scheduler | |
else: | |
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") | |
# Convert the UNet2DConditionModel model. | |
unet_config = create_unet_diffusers_config(original_config, image_size=image_size) | |
unet_config["upcast_attention"] = upcast_attention | |
with init_empty_weights(): | |
unet = UNet2DConditionModel(**unet_config) | |
converted_unet_checkpoint = convert_ldm_unet_checkpoint( | |
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema | |
) | |
for param_name, param in converted_unet_checkpoint.items(): | |
set_module_tensor_to_device(unet, param_name, "cpu", value=param) | |
# Convert the VAE model. | |
if vae_path is None: | |
vae_config = create_vae_diffusers_config(original_config, image_size=image_size) | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) | |
if ( | |
"model" in original_config | |
and "params" in original_config.model | |
and "scale_factor" in original_config.model.params | |
): | |
vae_scaling_factor = original_config.model.params.scale_factor | |
else: | |
vae_scaling_factor = 0.18215 # default SD scaling factor | |
vae_config["scaling_factor"] = vae_scaling_factor | |
with init_empty_weights(): | |
vae = AutoencoderKL(**vae_config) | |
for param_name, param in converted_vae_checkpoint.items(): | |
set_module_tensor_to_device(vae, param_name, "cpu", value=param) | |
else: | |
vae = AutoencoderKL.from_pretrained(vae_path) | |
if model_type == "FrozenOpenCLIPEmbedder": | |
config_name = "stabilityai/stable-diffusion-2" | |
config_kwargs = {"subfolder": "text_encoder"} | |
text_model = convert_open_clip_checkpoint(checkpoint, config_name, **config_kwargs) | |
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2", subfolder="tokenizer") | |
if stable_unclip is None: | |
if controlnet: | |
pipe = StableDiffusionControlNetPipeline( | |
vae=vae, | |
text_encoder=text_model, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
controlnet=controlnet_model, | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False, | |
) | |
else: | |
pipe = pipeline_class( | |
vae=vae, | |
text_encoder=text_model, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False, | |
) | |
else: | |
image_normalizer, image_noising_scheduler = stable_unclip_image_noising_components( | |
original_config, clip_stats_path=clip_stats_path, device=device | |
) | |
if stable_unclip == "img2img": | |
feature_extractor, image_encoder = stable_unclip_image_encoder(original_config) | |
pipe = StableUnCLIPImg2ImgPipeline( | |
# image encoding components | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
# image noising components | |
image_normalizer=image_normalizer, | |
image_noising_scheduler=image_noising_scheduler, | |
# regular denoising components | |
tokenizer=tokenizer, | |
text_encoder=text_model, | |
unet=unet, | |
scheduler=scheduler, | |
# vae | |
vae=vae, | |
) | |
elif stable_unclip == "txt2img": | |
if stable_unclip_prior is None or stable_unclip_prior == "karlo": | |
karlo_model = "kakaobrain/karlo-v1-alpha" | |
prior = PriorTransformer.from_pretrained(karlo_model, subfolder="prior") | |
prior_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
prior_text_model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
prior_scheduler = UnCLIPScheduler.from_pretrained(karlo_model, subfolder="prior_scheduler") | |
prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config) | |
else: | |
raise NotImplementedError(f"unknown prior for stable unclip model: {stable_unclip_prior}") | |
pipe = StableUnCLIPPipeline( | |
# prior components | |
prior_tokenizer=prior_tokenizer, | |
prior_text_encoder=prior_text_model, | |
prior=prior, | |
prior_scheduler=prior_scheduler, | |
# image noising components | |
image_normalizer=image_normalizer, | |
image_noising_scheduler=image_noising_scheduler, | |
# regular denoising components | |
tokenizer=tokenizer, | |
text_encoder=text_model, | |
unet=unet, | |
scheduler=scheduler, | |
# vae | |
vae=vae, | |
) | |
else: | |
raise NotImplementedError(f"unknown `stable_unclip` type: {stable_unclip}") | |
elif model_type == "PaintByExample": | |
vision_model = convert_paint_by_example_checkpoint(checkpoint) | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker") | |
pipe = PaintByExamplePipeline( | |
vae=vae, | |
image_encoder=vision_model, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=None, | |
feature_extractor=feature_extractor, | |
) | |
elif model_type == "FrozenCLIPEmbedder": | |
text_model = convert_ldm_clip_checkpoint( | |
checkpoint, local_files_only=local_files_only, text_encoder=text_encoder | |
) | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") if tokenizer is None else tokenizer | |
if load_safety_checker: | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") | |
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker") | |
else: | |
safety_checker = None | |
feature_extractor = None | |
if controlnet: | |
pipe = StableDiffusionControlNetPipeline( | |
vae=vae, | |
text_encoder=text_model, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet_model, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
else: | |
pipe = pipeline_class( | |
vae=vae, | |
text_encoder=text_model, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
elif model_type in ["SDXL", "SDXL-Refiner"]: | |
if model_type == "SDXL": | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = convert_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", pad_token="!") | |
config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" | |
config_kwargs = {"projection_dim": 1280} | |
text_encoder_2 = convert_open_clip_checkpoint( | |
checkpoint, config_name, prefix="conditioner.embedders.1.model.", has_projection=True, **config_kwargs | |
) | |
pipe = StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=text_encoder_2, | |
tokenizer_2=tokenizer_2, | |
unet=unet, | |
scheduler=scheduler, | |
force_zeros_for_empty_prompt=True, | |
) | |
else: | |
tokenizer = None | |
text_encoder = None | |
tokenizer_2 = CLIPTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", pad_token="!") | |
config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" | |
config_kwargs = {"projection_dim": 1280} | |
text_encoder_2 = convert_open_clip_checkpoint( | |
checkpoint, config_name, prefix="conditioner.embedders.0.model.", has_projection=True, **config_kwargs | |
) | |
pipe = StableDiffusionXLImg2ImgPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=text_encoder_2, | |
tokenizer_2=tokenizer_2, | |
unet=unet, | |
scheduler=scheduler, | |
requires_aesthetics_score=True, | |
force_zeros_for_empty_prompt=False, | |
) | |
else: | |
text_config = create_ldm_bert_config(original_config) | |
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config) | |
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") | |
pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler) | |
return pipe | |
def download_controlnet_from_original_ckpt( | |
checkpoint_path: str, | |
original_config_file: str, | |
image_size: int = 512, | |
extract_ema: bool = False, | |
num_in_channels: Optional[int] = None, | |
upcast_attention: Optional[bool] = None, | |
device: str = None, | |
from_safetensors: bool = False, | |
use_linear_projection: Optional[bool] = None, | |
cross_attention_dim: Optional[bool] = None, | |
) -> DiffusionPipeline: | |
if not is_omegaconf_available(): | |
raise ValueError(BACKENDS_MAPPING["omegaconf"][1]) | |
from omegaconf import OmegaConf | |
if from_safetensors: | |
if not is_safetensors_available(): | |
raise ValueError(BACKENDS_MAPPING["safetensors"][1]) | |
from safetensors import safe_open | |
checkpoint = {} | |
with safe_open(checkpoint_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
checkpoint[key] = f.get_tensor(key) | |
else: | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
else: | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
# NOTE: this while loop isn't great but this controlnet checkpoint has one additional | |
# "state_dict" key https://huggingface.co/thibaud/controlnet-canny-sd21 | |
while "state_dict" in checkpoint: | |
checkpoint = checkpoint["state_dict"] | |
original_config = OmegaConf.load(original_config_file) | |
if num_in_channels is not None: | |
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels | |
if "control_stage_config" not in original_config.model.params: | |
raise ValueError("`control_stage_config` not present in original config") | |
controlnet_model = convert_controlnet_checkpoint( | |
checkpoint, | |
original_config, | |
checkpoint_path, | |
image_size, | |
upcast_attention, | |
extract_ema, | |
use_linear_projection=use_linear_projection, | |
cross_attention_dim=cross_attention_dim, | |
) | |
return controlnet_model | |